Кремер Н.Ш. Теория вероятностей и математическая статистика. №002.036 стр.088


Студент рассматриваемого вуза по уровню подготовленности с вероятностью 0,3 является «слабым», с вероятностью 0,5 - «средним», с вероятностью 0,2 - «сильным». Какова вероятность того, что из наудачу выбранных 6 студентов вуза: а) число «слабых», «средних» и «сильных» оказывается одинаковым; б) число «слабых» и «сильных» окажется одинаковым?

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

В магазин поступила обувь с двух фабрик в отношении 2:3. Куплено 4 пары обуви. Найти закон распределения числа купленных пар обуви, изготовленной первой фабрикой. Найти математическое ожидание и среднее квадратическое отклонение этой случайной величины.

По данным примера 4.1 найти математическое ожидание и дисперсию частости (доли) пар обуви, изготовленных первой фабрикой, среди 4 купленных.

Доказать, что сумма двух независимых случайных величин, распределенных по закону Пуассона с параметрами λ1 и λ2 также распределена по закону Пуассона с параметром λ=λ12.

Проводится проверка большой партии деталей до обнаружения бракованной (без ограничения числа проверенных деталей). Составить закон распределения числа проверенных деталей. Найти его математическое ожидание и дисперсию, если известно, что вероятность брака для каждой детали равна 0,1.

В лотерее «Спортлото 6 из 45» денежные призы получают участники, угадавшие 3, 4, 5 и 6 видов спорта отобранных случайно 6 видов из 45 (размер приза увеличивается с увеличением числа угаданных видов спорта). Найти закон распределения случайной величины X - числа угаданных видов спорта среди случайно отобранных шести. Какова вероятность получения денежного приза? Найти математическое ожидание дисперсию случайной величины X.

Поезда метрополитена идут регулярно с интервалом 2мин. Пассажир выходит на платформу в случайный момент времени. Какова вероятность того, что ждать пассажиру придется не больше полминуты. Найти математическое ожидание и среднее квадратическое отклонение случайной величины X - времени ожидания поезда.

Доказать, что если промежуток времени Т, распределенный по показательному закону, уже длился некоторое время τ, то это никак не влияет на закон распределения оставшейся части Т1=Т-τ промежутка, т.е. закон распределения Т1 остается таким же, как и всего промежутка Т.

Back to top