Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №17.4


 Трое охотников одновременно выстрелили по вепрю, который был убит одной пулей. Найти вероятность того, что вепрь был убит первым охотником, если вероятности их попадания равны соответственно 0,2, 0,4 и 0,6.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

 Случайная величина X имеет нормальный закон распределения с параметрами m=3, σ=2,5.

Найти: а) вероятность P{-13<X<5};

б) интервал, симметрично расположенный относительно среднего значения, в который с вероятностью γ=0,84 попадет X.

 Ребенок играет с 10 буквами разрезной азбуки: А, А, А, Е, И, К, М, М, Т, Т. Какова вероятность того, что при случайном расположении букв в ряд он получит слово «математика»?

 Имеется две урны, в первой из которых 7 белых и 4 черных шара, во второй — 3 белых и 5 черных. Найти вероятность того, что если выбрать из каждой урны по шару, оба они окажутся белыми.

 Найти вероятность хотя бы одного появления события A в 10 независимых опытах, если вероятность появления A в каждом опыте равна 0,1.

 Детали контролируются двумя контролерами. Вероятность того, что деталь попадет к первому контролеру, равна 0,4, а ко второму — 0,6. Вероятность того, что годная деталь будет признана стандартной первым контролером, равна — 0,98, а вторым — 0,94. Годная деталь была признана стандартной. Найти вероятность того, что эту деталь проверил второй контролер.

 Из колоды в 36 карт выбираются наудачу 4 карты. Найти закон распределения и математическое ожидание случайной величины X — числа тузов среди выбранных карт.

 Средняя масса шоколадных конфет, выпускаемых в коробках кондитерской фабрикой, равна 200 г, среднее квадратическое отклонение 5 г. Считая массу m конфет нормально распределенной случайной величиной, найти вероятность того, что масса коробки конфет заключена в пределах (196, 207) г.

 

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина X примет значения из интервала (4,5; 6).

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина X примет значения из интервала (0; 3,5).

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график фун кции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина X примет значения из интервала (0,2; 1,3).

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график фун кции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина X примет значения из интервала (0,1; 0,9).

 

 В каждом из трех матчей футбольного турнира команда с вероятностью 0,6 одерживает победу, получая за нее 2 очка, с вероятностью 0,3 играет вничью, получая 1 очко, и с вероятностью 0,1 терпит поражение, не получая за это очков. Найти закон распределения общего числа набранных очков.

 Во время эстафетных соревнований по биатлону спортсмену требуется поразить на огневом рубеже 5 мишеней, имея для этого 7 патронов. Вероятность попадания в мишень при выстреле составляет 0,8. Найти вероятность того, что непораженной останется одна мишень.

 В группе из 10 студентов, пришедших на экзамен, 3 подготовленных отлично, 4 — хорошо, 2 — посредственно и 1 — плохо. В экзаменационных билетах имеется 20 вопросов. Отлично подготовленный студент может ответить на все 20 вопросов, хорошо подготовленный — на 16, посредственно — на 10, плохо — на 5. Вызванный наугад студент ответил на три произвольно заданных вопроса. Найти вероятность того, что он подготовлен отлично.

Back to top