Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №24.5


 Во время эстафетных соревнований по биатлону спортсмену требуется поразить на огневом рубеже 5 мишеней, имея для этого 7 патронов. Вероятность попадания в мишень при выстреле составляет 0,8. Найти вероятность того, что непораженной останется одна мишень.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

 В каждом из трех матчей футбольного турнира команда с вероятностью 0,6 одерживает победу, получая за нее 2 очка, с вероятностью 0,3 играет вничью, получая 1 очко, и с вероятностью 0,1 терпит поражение, не получая за это очков. Найти закон распределения общего числа набранных очков.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график фун кции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина X примет значения из интервала (0,1; 0,9).

 

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график фун кции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина X примет значения из интервала (0,2; 1,3).

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина X примет значения из интервала (0; 3,5).

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина X примет значения из интервала (4,5; 6).

 Трое охотников одновременно выстрелили по вепрю, который был убит одной пулей. Найти вероятность того, что вепрь был убит первым охотником, если вероятности их попадания равны соответственно 0,2, 0,4 и 0,6.

 Случайная величина X имеет нормальный закон распределения с параметрами m=3, σ=2,5.

Найти: а) вероятность P{-13<X<5};

б) интервал, симметрично расположенный относительно среднего значения, в который с вероятностью γ=0,84 попадет X.

Back to top