Непрерывная случайная величина X принимает значения на интервале (0;1) и имеет там функцию распределения F(x)=Cx1/4 с параметром C. Найти: параметр C, медиану, вероятность P(0,1<X<0,16), плотность распределения.
Другие задачи по теории вероятности
Непрерывная случайная величина X принимает значения на интервале (1;+∞) и имеет там плотность распределения f(x)=Cx-6 с параметром C. Найти: константу C, функцию распределения, моду, M(X), D(X).
Случайная величина X распределена по пуассоновскому закону с параметром 1,9. Построить её функцию распределения для значений x≤4,5. Найти вероятность P(X>1).
Вероятность того, что потребитель увидит рекламу определенного продукта по одному из трех телевизионных каналов, равна 0,05. Предполагается, что эти события независимы в совокупности. Чему равна вероятность того, что потребитель увидит рекламу а) по всем трем каналам; б) хотя бы по одному из этих каналов?
Агент по недвижимости пытается продать участок земли под застройку. Он полагает, что участок будет продан в течение полугода с вероятностью 0,9, если экономическая ситуация в регионе не будет ухудшаться. Если же экономическая ситуация будет ухудшаться, то вероятность продать участок составит 0,5. Экономист, консультирующий агента полагает, что с вероятностью, равной 0,7, экономическая ситуация в регионе в течение ближайшего полугода будет ухудшаться. Чему равна вероятность того, что участок будет продан в течение полугода?
Запишите таблицу для данного закона распределения случайной величины X, постройте многоугольник распределения. Найдите числовые характеристики распределения. Запишите функцию распределения и постройте ее график. Ответьте на вопрос о вероятности описанного события.
Нефтеразведывательная компания получила финансирования для проведения шести нефтеразведок. Вероятность успешной нефтеразведки 0,05. Предположим, что нефтеразведку осуществляют независимые друг от друга разведывательные партии. Чему равна вероятность того, что не менее двух нефтеразведок принесут успех? Случайная величина X — количество успешных нефтеразведок.
Вес тропического грейпфрута, выращенного в Краснодарском крае, нормально распределенная случайная величина с неизвестным математическим ожиданием и дисперсией, равной 0,04. Агрономы знают, что 65% фруктов весят меньше, чем 0,5 кг. Найдите ожидаемый вес случайно выбранного грейпфрута.
Для изучения различных демографических характеристик населения выборочно обследовалось 300 семей города. Оказалось, что среди обследованных семей 15% состоят из двух человек. В каких пределах находится в генеральной совокупности доля семей, состоящих из двух человек, если принять доверительную вероятность равной 0,95?
X – биномиально распределенная случайная величина с параметрами n=900 и p=8/10. Найти P(X=700), P(500<X<730). (Ответ вычислить по предельным теоремам Муавра-Лапласа).
В ткацком станке 1300 нитей. Вероятность обрыва одной нити за один час равна 0,03, X – число обрывов нити за данные 6 минут. Найти вероятность P(X=3), P(X>1). (Ответ вычислить по предельной теореме Пуассона).
Случайная величина X распределена по нормальному закону с параметрами 5, 1,25. Найти: а) вероятность P(-2,5<X<7), б) интервал (x3,x4), симметрично расположенный относительно среднего значения, в который с вероятностью 0,91 попадает X.
1. Случайная величина X равномерно распределена на отрезке [-2,70]. Найти вероятность P(22<X<80).
2. Случайная величина X распределена по показательному закону с параметром 2,5. Найти вероятность P(0,4<X<1).
Имеется 8 изделий, из них 5 бракованные. Для контроля качества из них отбирают 3 изделия. X – число бракованных изделий среди отобранных. Составить закон распределения X, найти вероятность обнаружить брак (т.е. встретить хотя бы одно бракованное изделие).
Проводится серия независимых испытаний до первого появления благоприятного исхода. В каждом испытании благоприятный исход может появиться с одинаковой вероятностью. Среднее число всех испытаний равно 8. Найти вероятность, что неудачных исходов будет не более двух.
Случайная величина X распределена по биномиальному закону с параметрами 5, 0,4. Найти p(X=1), p(X=0), p(X=5).
Загружаем...