Случайная величина X задана плотностью распределения вероятностей (на графике). Построить график функции распределения вероятностей, найти математическое ожидание и дисперсию случайной величины.

Другие задачи по теории вероятности
Закон распределения двумерной дискретной случайной величины (X,Y) задан таблицей:

Найти условные законы распределения случайной величины X при условии, что Y=1 случайной величины Y при условии, что Х=0.
Случайная величина X задана плотностью распределения вероятностей (на графике). Построить график функции распределения вероятностей, найти математическое ожидание и дисперсию случайной величины.

Формализовать событие выпадения хотя бы одной цифры 4 при одновременном бросании двух кубиков и выпадение сразу двух цифр 4. Каковы вероятности этих событий, будет ли отличаться решение этой задачи от бросаний 1-го кубика дважды. Как проявится аспект совместности событий.
Из 100 деталей 10 бракованных. Какова вероятность того, что среди 5 отобранных деталей 2 окажутся бракованными.
Последовательно из урны извлекают 2 шара. В урне всего 3 белых и 7 черных. В счете без возвращения найти вероятность, что оба шара будут белыми или хотя бы 1 белый.
Стрелок попадает в мишень с вероятностью 0,5. Какова вероятность хотя бы 1-го попадания в серии из 2-х выстрелов (Решить 3 способами).
Дана плотность распределения f(x) случайной величины X:

Найти параметр a, математическое ожидание M(X), дисперсию D(X), функцию распределения F(x), вероятность выполнения неравенства –π/4<X<π/4.
Строительная фирма раскладывает рекламные листы по почтовым ящикам. Прежний опыт показывает, что в одном случае из двух тысяч следует заказ. Найти вероятность того, что при распространении 100 тыс. листов число заказов будет: а) равно 60; б) находится в границах от 55 до 65.
В одном сосуде находится Б1 белых и Ч1 черных шаров. Во втором – Б2 белых и Ч2 черных. Бросают два кубика. Если сумма очков, выпавших на верхних гранях, меньше 10, берут шар из первого сосуда, если больше или равна 10 – из второго. Вынут черный шар. Какова вероятность того, что сумма очков была не меньше 10? Б1=5, Ч1=6, Б2=9, Ч2=6.
Два лица договорились встретиться в определенном месте между 16 и 17ч., причем, пришедший первым ждет другого в течение 15мин., после чего уходит. Найти вероятность их встречи, если приход каждого в течение указанного часа может произойти в любое время, и моменты прихода независимы.
Бросают два кубика. Суммируют число очков, выпавших на верхних гранях кубиков. Построить множество элементарных событий и его подмножество, соответствующее событию A={сумма очков больше 7}. Найти вероятность события A. Построить подмножество, соответствующее событию Ā (дополнение A).
Зенитная батарея, состоящая из k орудий, производит залп по группе, состоящей из l самолетов (k меньше или равно l). Каждое орудие выбирает себе цель случайно и независимо от других. Найти вероятность того, все k орудий выстрелят по одной и той же цели.
В ходе аудиторской проверки строительной компании аудитор случайным образом отбирает 5 счетов. Если 3% счетов содержат ошибки, чему равна вероятность того, что аудитор найдет следующее: а) только один счет будет с ошибкой? б) хотя бы один счет будет с ошибкой?
Отдел маркетинга фирмы проводит опрос для выяснения мнений потребителей по определенному типу продуктов. Известно, что в местности, где проводятся исследования, 10% населения являются потребителями интересующего фирму продукта и могут дать ему квалифицированную оценку. Компания случайным образом отбирает 10 человек из всего населения. Чему равна вероятность того, что по крайней мере один человек из них может квалифицированно оценить продукт?
Загружаем...