Свободный источник №1.1.0023


Бросают два кубика. Суммируют число очков, выпавших на верхних гранях кубиков. Построить множество элементарных событий и его подмножество, соответствующее событию A={сумма очков больше 7}. Найти вероятность события A. Построить подмножество, соответствующее событию Ā (дополнение A).

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Два лица договорились встретиться в определенном месте между 16 и 17ч., причем, пришедший первым ждет другого в течение 15мин., после чего уходит. Найти вероятность их встречи, если приход каждого в течение указанного часа может произойти в любое время, и моменты прихода независимы.

В одном сосуде находится Б1 белых и Ч1 черных шаров. Во втором – Б2 белых и Ч2 черных. Бросают два кубика. Если сумма очков, выпавших на верхних гранях, меньше 10, берут шар из первого сосуда, если больше или равна 10 – из второго. Вынут черный шар. Какова вероятность того, что сумма очков была не меньше 10? Б1=5, Ч1=6, Б2=9, Ч2=6.

Строительная фирма раскладывает рекламные листы по почтовым ящикам. Прежний опыт показывает, что в одном случае из двух тысяч следует заказ. Найти вероятность того, что при распространении 100 тыс. листов число заказов будет: а) равно 60; б) находится в границах от 55 до 65.

Случайная величина X задана плотностью распределения вероятностей (на графике). Построить график функции распределения вероятностей, найти математическое ожидание и дисперсию случайной величины.

Закон распределения двумерной дискретной случайной величины (X,Y) задан таблицей:

Найти условные законы распределения случайной величины X при условии, что Y=1 случайной величины Y при условии, что Х=0.

Случайная величина X задана плотностью распределения вероятностей (на графике). Построить график функции распределения вероятностей, найти математическое ожидание и дисперсию случайной величины.

Формализовать событие выпадения хотя бы одной цифры 4 при одновременном бросании двух кубиков и выпадение сразу двух цифр 4. Каковы вероятности этих событий, будет ли отличаться решение этой задачи от бросаний 1-го кубика дважды. Как проявится аспект совместности событий.

Back to top