Из колоды в 52 карты наугад вынимают 4 карты. Найти вероятность того, что среди них окажется хотя бы одна дама.
Другие задачи по теории вероятности
Бросают два кубика. Суммируют число очков, выпавших на верхних гранях кубиков. Построить множество элементарных событий и его подмножество, соответствующее событию A={сумма очков больше 9}. Найти вероятность события A. Построить подмножество, соответствующее событию Ā (дополнение A). Найти его вероятность.
В одном сосуде находится Б1 белых и Ч1 черных шаров. Во втором – Б2 белых и Ч2 черных. Бросают два кубика. Если сумма очков, выпавших на верхних гранях, меньше 10, берут шар из первого сосуда, если больше или равна 10 – из второго. Вынут белый шар. Какова вероятность того, что сумма очков была меньше 10? Б1=6, Ч1=5, Б2=7, Ч2=9.
В одном сосуде находится Б1 белых и Ч1 черных шаров. Во втором – Б2 белых и Ч2 черных. Бросают два кубика. Если сумма очков, выпавших на верхних гранях, меньше 10, берут шар из первого сосуда, если больше или равна 10 – из второго. Вынут черный шар. Какова вероятность того, что сумма очков была не меньше 10? Б1=8, Ч1=4, Б2=6, Ч2=9.
В одном сосуде находится Б1 белых и Ч1 черных шаров. Во втором – Б2 белых и Ч2 черных. Бросают два кубика. Если сумма очков, выпавших на верхних гранях, меньше 10, берут шар из первого сосуда, если больше или равна 10 – из второго. Вынут белый шар. Какова вероятность того, что сумма очков была не меньше 10? Б1=7, Ч1=6, Б2=5, Ч2=9.
Строительная фирма раскладывает рекламные листы по почтовым ящикам. Прежний опыт показывает, что в одном случае из двух тысяч следует заказ. Найти вероятность того, что при распространении 100 тыс. листов число заказов будет: а) равно 85; б) находится в границах от 80 до 90.
Из 9 деталей, среди которых 5 качественных и 4 бракованных, отбирают случайным образом 6. Найти вероятность того, что среди отобранных 3 детали без брака и 3 – бракованные.
На заводе 24 сменных инженера, из них 6 женщин. В смену занято 4 человека. Найти вероятность того, что в случайно выбранную смену мужчин окажется не менее 2.