В одном сосуде находится Б1 белых и Ч1 черных шаров. Во втором – Б2 белых и Ч2 черных. Бросают два кубика. Если сумма очков, выпавших на верхних гранях, меньше 10, берут шар из первого сосуда, если больше или равна 10 – из второго. Вынут белый шар. Какова вероятность того, что сумма очков была не меньше 10? Б1=7, Ч1=6, Б2=5, Ч2=9.
Другие задачи по теории вероятности
Строительная фирма раскладывает рекламные листы по почтовым ящикам. Прежний опыт показывает, что в одном случае из двух тысяч следует заказ. Найти вероятность того, что при распространении 100 тыс. листов число заказов будет: а) равно 85; б) находится в границах от 80 до 90.
Из 9 деталей, среди которых 5 качественных и 4 бракованных, отбирают случайным образом 6. Найти вероятность того, что среди отобранных 3 детали без брака и 3 – бракованные.
На заводе 24 сменных инженера, из них 6 женщин. В смену занято 4 человека. Найти вероятность того, что в случайно выбранную смену мужчин окажется не менее 2.
Узел автомашины состоит из 4 деталей. Вероятность выхода этих деталей из строя соответственно равна: p1=0,02, p2=0,03, p3=0,04, p4=0,05. Узел выходит из строя, если выходит из строя хотя бы одна деталь. Найти вероятность того, что узел не выйдет из строя, если детали выходят из строя независимо друг от друга.
Вероятность того, что клиент банка не вернет заем в период экономического роста, равна 1/21, а в период экономического кризиса — 1/5. Предположим, что вероятность того, что начнется период экономического роста, равна 0,65. Чему равна вероятность того, что случайно выбранный клиент банка не вернет полученный кредит?
Рабочий обслуживает 4 автомата. Вероятность брака для первого автомата равна 0,03, для второго – 0,02, для третьего – 0,04, для четвертого – 0,02. Производительность первого автомата в три раза больше, чем второго, третьего в два раза меньше, чем второго, а четвертого равна производительности первого автомата. Изготовленные детали попадают на общий конвейер. Определить вероятность того, что взятая наудачу деталь будет годной.
В группе 16 студентов, среди которых 8 отличников. Наугад отобраны 10 студентов. Найти вероятность того, что среди отобранных 5 отличников.