Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №508, стр.177


Из генеральной совокупности извлечена выборка объема n=10:

варианта xi -2 1 2 3 4 5
частота ni 2 1 2 2 2 1

Оценить с надежностью 0,95 математическое ожидание a нормально распределенного признака генеральной совокупности по выборочной средней при помощи доверительного интервала.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

По данным девяти независимых равноточных измерений некоторой физической величины найдены среднее арифметическое результатов измерений равное 30,1 и «исправленное» среднее квадратическое отклонение s=6. Оценить истинное значение измеряемой величины с помощью доверительного интервала с надежностью γ=0,99. Предполагается, что результаты измерений распределены нормально.

По данным выборки объема n=16 из генеральной совокупности найдено «исправленное» среднее квадратическое отклонение s=1 нормально распределенного количественного признака. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение σ с надежностью 0,95.

Произведено 12 измерений одним прибором (без систематической ошибки) некоторой физической величины, причем «исправленное» среднее квадратическое отклонение s случайных ошибок измерений оказалось равным 0,6. Найти точность прибора с надежностью 0,99. Предполагается, что результаты измерений распределены нормально.

Производятся независимые испытания с одинаковой, но неизвестной вероятностью p появления события A в каждом испытании. Найти доверительный интервал для оценки вероятности p с надежностью 0,95, если в 60 испытаниях событие A появилось 15 раз.

Изготовлен экспериментальный игровой автомат, который должен обеспечить появление выигрыша в одном случае из 100 бросаний монеты в автомат. Для проверки пригодности автомата произведено 400 испытаний, причем выигрыш появился 5 раз. Найти доверительный интервал, покрывающий неизвестную вероятность появления выигрыша с надежностью γ=0,999.

Найти методом произведений выборочную среднюю и выборочную дисперсию по заданному распределению выборки объема n=100:

варианта xi 12 14 16 18 20 22
частота ni 5 15 50 16 10 4

Найти методом произведений выборочную среднюю и выборочную дисперсию по заданному распределению выборки объема n=100:

варианта xi 2 3 7 9 11 12,5 16 18 23 25 26
частота ni 3 5 10 6 10 4 12 13 8 20 9

Найти минимальный объем выборки, при котором с надежностью 0,975 точность оценки математического ожидания a генеральной совокупности по выборочной средней равна δ=0,3, если известно среднее квадратическое отклонение σ=1,2 нормально распределенной генеральной совокупности.

Найти доверительный интервал для оценки с надежностью 0,95 неизвестного математического ожидания a нормально распределенного признака X генеральной совокупности, если генеральное среднее квадратическое отклонение σ=5, выборочная средняя равна 14 и объем выборки n=25.

Найти методом наибольшего правдоподобия по выборке x1, x2,…, xn точечную оценку неизвестного параметра λ показательного распределения, плотность которого

Найти методом наибольшего правдоподобия точечную оценку параметра p (вероятность появления события в одном опыте) биномиального распределения:

,

где xi – число появлений события в i-ом опыте (i=1,2,3,…,n), m – количество испытаний в одном опыте, n – число опытов.

Найти методом моментов по выборке x1, x2,…, xn точечные оценки неизвестных параметров λ1 и λ2 «двойного распределения» Пуассона: где xi - число появлений события в ni испытаниях, λ1 и λ2 - положительные числа, причем λ2 > λ1.

Случайная величина X (уровень воды в реке по сравнению с номиналом) подчинена гамма-распределению, плотность которого определяется параметрами α и β (α>-1, β>0):

Ниже приведено распределение среднего уровня воды по данным n=45 паводков (в первой строке указан средний уровень воды xi (см); во второй строке приведена частота ni - количество паводков со средним уровнем воды xi):

xi 37,5 62,5 87,5 112,5 137,5 162,5 187,5 250 350
ni 1 3 6 7 7 5 4 8 4

Найти методом моментов точечные оценки неизвестных параметров α и β рассматриваемого гамма-распределения.

Найти методом моментов по выборке x1, x2,…, xn точечные оценки неизвестных параметров α и β гамма-распределения, плотность которого

$f(x)=\frac{1}{\beta^{\alpha + 1}\cdot\varGamma(\alpha + 1)}\cdot x^{\alpha}\cdot e^{-x/\beta}\ (\alpha>1,\ \beta>0,\ x\ge 0)$.
Back to top