Бестугин А.Р., Дийков А.Л. Теория вероятностей: Варианты контрольных работ. №1.14.5


На двух станках производят детали, причем на втором в два раза больше, чем на первом. Вероятность брака на первом станке – 0,01; на втором – 0,02. Найти вероятность того, что произвольно взятая деталь бракованная.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Монета брошена три раза. Найти вероятность того, что хотя бы один раз появится герб.

Известны вероятности независимых событий A, B, C: P(A)=0,3, P(B)=0,8, P(C)=0,5. Определить вероятность того, что: а) произойдут два и только два из этих событий, б) произойдет не более одного события.

Сколько раз нужно бросить монету, чтобы вероятность хотя бы однократного появления герба была больше 0,875?

Имеется две партии изделий в 15 и 20 шт.; в первой два, во второй три бракованных. Одно изделие из первой переложили во вторую, после чего из второй берут одно наугад. Найти вероятность того, что оно бракованное.

Из 20 стрелков шесть попадают в цель с вероятностью 0,8; десять – с вероятностью 0,6 и четыре с вероятностью 0,4. Наудачу выбранный стрелок попал в цель. К какой из групп он вероятнее всего принадлежит?

Известны вероятности независимых событий A, B, C: P(A)=0,5, P(B)=0,3, P(C)=0,6. Определить вероятность того, что: а) произойдут только события B и C, б) произойдет не более одного события.

Вероятность того, что в пяти опытах событие произойдет хотя бы один раз, равна 0,6. Какова вероятность появления события в одном опыте.

Back to top