Используя данные примера 5.11 найти: а) ковариацию и коэффициент корреляции случайных величин X и Y; б) коррелированные или некоррелированные эти случайные величины.
Другие задачи по теории вероятности
Используя данные примера 5.12 найти: а) ковариацию и коэффициент корреляции случайных величин X и Y; б) коррелированные или некоррелированные эти случайные величины.
Случайная величина X распределена на всей числовой оси с плотностью вероятности . Найти плотность вероятности случайной величины Y=X2 и ее математическое ожидание.
Найти закон распределения суммы двух независимых случайных величин, каждая из которых распределена по стандартному нормальному закону, т.е. N(0;1).
Двумерная случайная величина определяется следующим образом. Если при подбрасывании игральной кости выпадает четное число очков, то X=1, в противном случае Х=0; Y=1, когда число очков кратно трем, в противном случае Y=0. Найти: а) законы распределения двумерной случайной величины (X,Y) и ее одномерных составляющих; б) условные законы распределения X и Y.
Двумерная случайная величина (Х,Y) распределена с постоянной совместной плотностью внутри квадрата ОАВС, где О(0;0), A(0;1), B(1;1), С(1;0). Найти выражение совместной плотности и функции распределения двумерной случайной величины (X,Y).
Поверхность распределения двумерной случайной величины (X,Y) представляет прямой круговой конус, основанием которого служит круг с центром в начале координат и с радиусом 1. Вне этого круга совместная плотность двумерной случайной величины (Х,Y) равна нулю. Найти выражения совместной плотности φ(x,y), плотностей вероятностей одномерных составляющих φ1(x), φ2(y), условных плотностей φx(y), φy(x) . Выяснить, являются ли случайные величины X и Y: зависимыми; коррелированными.
Двумерная случайная величина (X,Y) распределена по закону
Найти: а) коэффициент А; б) вероятность попадания случайной величины (X,Y) в пределы квадрата, центр которого совпадает с началом координат, а стороны параллельны осям координат и имеют длину 2. Установить, являются ли величины X и Y зависимыми; найти φ1(x), φ2(y).