Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №396, стр.131


Ребро куба измерено приближенно, причем a≤x≤b. Рассматривая ребро куба как случайную величину X, распределенную равномерно в интервале (а,b), найти: а) математическое ожидание объема куба; б) дисперсию объема куба.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

Задана функция распределения F(x) случайной величины X. Найти функцию распределения G(y) случайной величины Y=ЗХ+2.

Задана функция распределения F(x) случайной величины X. Найти функцию распределения G(y) случайной величины Y, если: а) Y=4X+6; б) Y=-5Х+1; в) Y=aX+b.

Дискретные независимые случайные величины X и Y заданы распределениями:

X 1 3
p 0,3 0,7

 

X 2 4
p 0,6 0,4

Найти распределение случайной величины Z=X+Y.

 

Дискретные независимые случайные величины X и Y заданы распределениями:

А) В)
X 10 12 16
p 0,4 0,1 0,5
X 4 10
p 0,7 0,3
   
Y 1 2
p 0,2 0,8
Y 1 7
p 0,8 0,2

Найти распределение случайной величины Z=X+Y.

Дискретные независимые случайные величины X и Y заданы распределениями:

Найти композицию этих законов, т.е. плотность распределения случайной величины Z=X+Y.

Дискретные независимые случайные величины X и Y заданы распределениями:

Найти композицию этих законов, т.е. плотность распределения случайной величины Z=X+Y.

Заданы плотности распределений независимых равномерно распределенных случайных величин X и Y: f1(x)= 1/2 в интервале (0,2), вне этого интервала f1(x)=0; f2(y)=1/2 в интервале (0,2), вне этого интервала f2(x)=0. Найти функцию распределения и плотность распределения случайной величины Z=X+Y. Построить график плотности распределения g(z).

Случайная величина X задана плотностью распределения f(x)=Cosx в интервале (0,π/2); вне этого интервала f(x)=0. Найти дисперсию функции Y=φ(x)=X2.

Случайная величина X задана плотностью распределения f(x)=(1/2)Sinx в интервале (0,π); вне этого интервала f(x)=0. Найти дисперсию функции Y=φ(x)=X2, используя плотность распределения g(y).

Случайная величина X задана плотностью распределения f(x)=(1/2)Sinx в интервале (0,π); вне этого интервала f(x)=0. Найти математическое ожидание случайной величины Y=φ(x)=X2, определив предварительно плотность распределения g(y) величины Y.

Задана плотность распределения

Найти плотность распределения g(y) случайной величины Y=(1/4)X2.

Задана плотность

нормально распределенной случайной величины X. Найти плотность распределения g(y) случайной величины Y=(1/2)X2.

Задана плотность

нормально распределенной случайной величины X. Найти плотность распределения g(y) случайной величины Y=X2.

Случайная величина X распределена нормально с математическим ожиданием, равным а, и среднеквадратическим отклонением, равным σ. Доказать, что линейная функция Y=АХ+В также распределена нормально, причем M(Y)=Аa+B, σ(Y) =|A|σ.

Back to top