Кремер Н.Ш. Теория вероятностей и математическая статистика. №004.018, стр.177


Среднее время безотказной работы прибора равно 80ч. Полагая, что время безотказной работы имеет показательный закон распределения, найти: а) выражение его плотности вероятности и функции распределения; б) вероятность того, что в течение 100ч прибор не выйдет из строя.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

Текущая цена акции может быть смоделирована с помощью нормального закона распределения с математическим ожиданием 15 ден.ед. и средним квадратичным отклонением 0,2 ден.ед. Найти вероятность того, что цена акции а) не выше 15,3 ден.ед.; б) не ниже 15,4 ден.ед.; в) от 14,9 до 15,3 ден.ед. С помощью правила трёх сигм найти границы, в которых будет находиться текущая цена акции.

Цена некой ценной бумаги нормально распределена. В течение последнего года 20% рабочих дней она была ниже 88 ден.ед., а 75% - выше 90 ден.ед. Найти: а) математическое ожидание и среднее квадратичное отклонение цены ценной бумаги; б) вероятность того, что в день покупки цена будет заключена в пределах от 83 до 96 ден.ед.; в) с надежностью 0,95 определить максимальное отклонение цены ценной бумаги от среднего (прогнозного) значения (по абсолютной величине).

Коробки с конфетами упаковываются автоматически. Их средняя масса равна 540г. Известно, что масса коробок с конфетами имеет нормальное распределение, а 5% коробок имеют массу, меньшую 500г. Каков процент коробок, масса которых: а) менее 470г.; б) от 500 до 550г.; в) более 550г.; г) отличается от средней не более, чем на 30г. (по абсолютной величине).

Случайная величина имеет нормальное распределение с математическим ожиданием  a=25. Вероятность попадания X в интервал (10;15) равна 0,09. Чему равна вероятность попадания X в интервал: а) (35;40); б) (30;35)?

Нормально распределенная случайная величина имеет следующую функцию распределения: F(x)=0,5+0,5Ф(x-1). Из какого интервала (1;2) или (2;6) она примет значение с большей вероятностью?

Квантиль уровня 0,15 нормально распределенной случайной величины X равен 12, а квантиль уровня 0,6 равен 16. Найти математическое ожидание и среднее квадратичное отклонение случайной величиной.

20%-ная точка нормально распределенной случайной величины равна 50, а 40%-ная точка равна 35. Найти вероятность того, что случайная величина примет значение в интервале (25;45)

Цена деления шкалы измерительного прибора равна 0,2. Показания прибора округляют до ближайшего целого числа. Полагая, что при отсчёте ошибка округления распределена по равномерному закону, найти: 1) математическое ожидание, дисперсию и среднее квадратичное отклонение этой случайной величины; 2) вероятность того, что ошибка округления: а) меньше 0,04; б) больше 0,05.

В магазине имеются 20 телевизоров, из них 7 имеют дефекты. Необходимо: а) составить закон распределения числа телевизоров с дефектами среди выбранных наудачу пяти; б) найти математическое ожидание и дисперсию этой случайной величины; в) определить вероятность того, что среди выбранных нет телевизоров с дефектами.

Вероятность поражения цели равна 0,05. Производится стрельба по цели до первого попадания. Необходимо: а) составить закон распределения числа сделанных выстрелов; б) найти математическое ожидание и дисперсию этой случайной величины; в) определить вероятность того, что для поражения цели потребуется не менее 5 выстрелов.

Устройство состоит из 1000 элементов, работающих независимо один от другого. Вероятность отказа любого элемента в течение времени t равна 0,002. Необходимо: а) составить закон отказавших за время t элементов; б) найти математическое ожидание и дисперсию этой случайной величины; в) определить вероятность того, что за время t откажет хотя бы один элемент.

Составить функцию распределения случайной величины, имеющей биномиальный закон распределения с параметрами n и p.

По данным примера 4.11 найдите математическое ожидание, дисперсию и среднее квадратичное отклонение доли (частости) выигравших облигаций среди приобретенных.

Вероятность выигрыша по облигации займа за все время его действия равна 0,1. Составить закон распределения числа выигравших облигаций среди приобретенных 19. Найти математическое ожидание, дисперсию, среднее квадратичное отклонение и моду этой случайной величины.

Back to top