Кремер Н.Ш. Теория вероятностей и математическая статистика. №004.011, стр.176


Вероятность выигрыша по облигации займа за все время его действия равна 0,1. Составить закон распределения числа выигравших облигаций среди приобретенных 19. Найти математическое ожидание, дисперсию, среднее квадратичное отклонение и моду этой случайной величины.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

По данным примера 4.11 найдите математическое ожидание, дисперсию и среднее квадратичное отклонение доли (частости) выигравших облигаций среди приобретенных.

Составить функцию распределения случайной величины, имеющей биномиальный закон распределения с параметрами n и p.

Устройство состоит из 1000 элементов, работающих независимо один от другого. Вероятность отказа любого элемента в течение времени t равна 0,002. Необходимо: а) составить закон отказавших за время t элементов; б) найти математическое ожидание и дисперсию этой случайной величины; в) определить вероятность того, что за время t откажет хотя бы один элемент.

Вероятность поражения цели равна 0,05. Производится стрельба по цели до первого попадания. Необходимо: а) составить закон распределения числа сделанных выстрелов; б) найти математическое ожидание и дисперсию этой случайной величины; в) определить вероятность того, что для поражения цели потребуется не менее 5 выстрелов.

В магазине имеются 20 телевизоров, из них 7 имеют дефекты. Необходимо: а) составить закон распределения числа телевизоров с дефектами среди выбранных наудачу пяти; б) найти математическое ожидание и дисперсию этой случайной величины; в) определить вероятность того, что среди выбранных нет телевизоров с дефектами.

Цена деления шкалы измерительного прибора равна 0,2. Показания прибора округляют до ближайшего целого числа. Полагая, что при отсчёте ошибка округления распределена по равномерному закону, найти: 1) математическое ожидание, дисперсию и среднее квадратичное отклонение этой случайной величины; 2) вероятность того, что ошибка округления: а) меньше 0,04; б) больше 0,05.

Среднее время безотказной работы прибора равно 80ч. Полагая, что время безотказной работы имеет показательный закон распределения, найти: а) выражение его плотности вероятности и функции распределения; б) вероятность того, что в течение 100ч прибор не выйдет из строя.

Back to top