Кремер Н.Ш. Теория вероятностей и математическая статистика. №002.032 стр.087


В результате проверки качества приготовленных для посева семян гороха установлено, что в среднем 90% всхожи. Сколько нужно посеять семян, чтобы с вероятностью 0,991 можно было ожидать, что доля взошедших семян отклонится от вероятности взойти каждому семени не более, чем на 0,03 (по абсолютной величине).

Скачать решение бесплатно Купить решение
      * Оплата через Я.Деньги.

Другие задачи по теории вероятности

Вероятность того, что дилер, торгующий ценными бумагами, продаст их, равна 0,7. Сколько должно быть ценных бумаг, чтобы можно было утверждать с вероятностью 0,996, что доля проданных среди них отклонится от 0,7 не более, чем на 0,04 (по абсолютной величине).

У страховой компании имеются 10000 клиентов. Каждый из них, страхуясь от несчастного случая, вносит 500 рублей. Вероятность несчастного случая 0,0055, а страховая сумма, выплачиваемая пострадавшему, составляет 50000 рублей. Какова вероятность того, что: а) страховая компания потерпит убыток; б) на выплату страховых сумм уйдет более половины всех средств, поступивших от клиентов?

Первый прибор состоит из 10 узлов, второй из 8 узлов. За время t каждый из узлов первого прибора выходит из строя, независимо от других, с вероятностью 0,1, второго – с вероятностью 0,2. Найти вероятность того, что за время t в первом приборе выйдет из строя хотя бы один узел, а во втором по крайней мере два узла.

Студент рассматриваемого вуза по уровню подготовленности с вероятностью 0,3 является «слабым», с вероятностью 0,5 - «средним», с вероятностью 0,2 - «сильным». Какова вероятность того, что из наудачу выбранных 6 студентов вуза: а) число «слабых», «средних» и «сильных» оказывается одинаковым; б) число «слабых» и «сильных» окажется одинаковым?

В магазин поступила обувь с двух фабрик в отношении 2:3. Куплено 4 пары обуви. Найти закон распределения числа купленных пар обуви, изготовленной первой фабрикой. Найти математическое ожидание и среднее квадратическое отклонение этой случайной величины.

По данным примера 4.1 найти математическое ожидание и дисперсию частости (доли) пар обуви, изготовленных первой фабрикой, среди 4 купленных.

Доказать, что сумма двух независимых случайных величин, распределенных по закону Пуассона с параметрами λ1 и λ2 также распределена по закону Пуассона с параметром λ=λ12.

Back to top