Е.Г. Репина, Е.И. Суханова. Теория вероятностей и математическая статистика: Варианты контрольных работ. №2.4


 Диаметр деталей, изготовленных цехом, является случайной величиной, распределенной по нормальному закону. Дисперсия ее равна 0,0001 см2, математическое ожидание - 2,5 см.

В каких границах с вероятностью 0,98 можно гарантировать диаметр детали?


Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

 Диаметр стальных стержней, выпускаемых цехом, представляет собой случайную величину, распределенную по нормальному закону с математическим ожиданием 75 мм и средним квадратическим отклонением 0,3 мм.

Найти вероятность брака, если допустимые размеры диаметра стержня (750,5) мм.


 В некоторой партии гаек средний диаметр оказался равным 82,6 мм, а среднее квадратическое отклонение 1,2 мм.

Считая, что размер диаметра гайки подчиняется нормальному закону распределения, найти поле допуска, если брак составляет 1,24%.


 Автомат штампует пуговицы. Контролируется диаметр пуговицы - Х, который распределен по нормальному закону с математическим ожиданием 10 мм и средним квадратическим отклонением 0,1 мм.

Найти интервал, в котором заключен диаметр изготовленных пуговиц, если брак составляет 1%.


 Вес отдельного батона хлеба данной партии есть случайная величина Х, описываемая нормальным законом распределения с математическим ожиданием М(Х)=500 г и средним квадратическим отклонением (Х)=8 г.

Определить вероятность того, что вес взятого наугад из данной партии батона:

а) будет в пределах от 496 до 508 г;

б) отклоняется от математического ожидание не более чем на 3,2 г.


 Найти дисперсию случайной величины, распределенной по нормальному закону, если известно, что отклонение случайной величины от ее математического ожидания, не превосходящее 0,1, имеет место с вероятностью 0,7887.


 Завод изготавливает шарики для подшипников. Диаметр шарика является случайной величиной, распределенной по нормальному закону с математическим ожиданием 20 см и средним квадратическим отклонением 2 см.

В каких границах с вероятностью 0,9216 можно гарантировать размер диаметра шарика?


 Диаметр подшипников, выпускаемых заводом, представляет случайную величину, распределенную по нормальному закону с математическим ожиданием 16 мм и дисперсией 0,16 мм2.

Найти вероятность брака при условии, что для диаметра подшипника разрешается допуск (0,7) мм.


Back to top