Бестугин А.Р., Дийков А.Л. Теория вероятностей: Варианты контрольных работ. №2.16.4


 Случайная величина ξ имеет нормальное распределение с математическим ожиданием а=64 и средним квадратическим отклонением σ=4. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,95.

Скачать решение бесплатно Купить решение
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

 Случайная величина ξ имеет нормальное распределение с математическим ожиданием а=65 и средним квадратическим отклонением σ=7. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,95.

 Случайная величина ξ имеет нормальное распределение с математическим ожиданием а=86 и средним квадратическим отклонением σ=7. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,96.

 Случайная величина ξ имеет нормальное распределение с математическим ожиданием а=58 и средним квадратическим отклонением σ=10. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,95.

 Случайная величина ξ имеет нормальное распределение с математическим ожиданием а=48 и средним квадратическим отклонением σ=7. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,94.

 Случайная величина ξ имеет нормальное распределение с математическим ожиданием а=56 и средним квадратическим отклонением σ=8. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,95.

 Известна вероятность события А: р(А)=0,4. Дискретная случайная величина ξ – число

появлений А в трех опытах. Построить ряд распределения случайной величины ξ; найти ее
математическое ожидание mξ и дисперсию Dξ.

Распределение дискретной случайной величины ξ содержит неизвестные значения х1 и х2 (х12):

xi x1 x2
pi 0,4 0,6

Известны числовые характеристики случайной величины: Mξ=3,6, Dξ=0,24. Требуется определить значения х1 и х2.

 

Back to top