Бестугин А.Р., Дийков А.Л. Теория вероятностей: Варианты контрольных работ. №2.9.4


 Случайная величина ξ имеет нормальное распределение с математическим ожиданием а=85 и средним квадратическим отклонением σ=12. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,95.

Скачать решение бесплатно Купить решение
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

 Случайная величина ξ имеет нормальное распределение с математическим ожиданием а=68 и средним квадратическим отклонением σ=9. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,94.

 Случайная величина ξ имеет нормальное распределение с математическим ожиданием а=58 и средним квадратическим отклонением σ=3. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,95.

 Случайная величина ξ имеет нормальное распределение с математическим ожиданием а=54 и средним квадратическим отклонением σ=8. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,96.

 Случайная величина ξ имеет нормальное распределение с математическим ожиданием а=52 и средним квадратическим отклонением σ=8. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,96.

 Случайная величина ξ имеет нормальное распределение с математическим ожиданием а=48 и средним квадратическим отклонением σ=9. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,94.

 Случайная величина ξ имеет нормальное распределение с математическим ожиданием а=66 и средним квадратическим отклонением σ=6. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,95.

 Случайная величина ξ имеет нормальное распределение с математическим ожиданием а=64 и средним квадратическим отклонением σ=4. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,95.

Back to top