Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №15.6


 Из урны, содержащей 5 белых и 6 черных шаров, наудачу извлечены 4 шара. Найти закон распределения и математическое ожидание случайной величины X — числа белых шаров среди отобранных.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

 При измерении усилия для разрыва нити получается нормально распределенная случайная величина X; среднее усилие составляет 61,3 (н) при среднем квадратическом отклонении 0,5 (н). Найти интервал, симметрично расположенный относительно среднего значения, в который с вероятностью 0,95 попадет значение разрывного усилия при очередном измерении.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a.
б) Построить график функции распределения F(x).
в) Найти M(X) , D(X) и σ(X).
г) Найти вероятность того, что случайная величина X примет значения из интервала (0,8; 3,2).

 Для поражения трех целей орудие может произвести не более 8 выстрелов. Вероятность поражения цели при любом выстреле равна 0,7. Определить вероятность того, что будет израсходовано ровно 7 снарядов.

 Определить вероятность того, что наудачу выбранное натуральное число не делится на 2 или на 3.

 Детали контролируются двумя контролерами. Вероятность того, что деталь попадет к первому контролеру, равна 0,7, а ко второму — 0,3. Вероятность того, что годная деталь будет признана стандартной первым контролером, равна — 0,93, а вторым — 0,98. Годная деталь была признана стандартной. Найти вероятность того, что эту деталь проверил первый контролер.

 Вероятность попадания стрелком в десятку равна 0,7, а в девятку — 0,3. Определить вероятность того, что данный стрелок при трех выстрелах наберет не менее 29 очков.

 Из колоды в 32 карты наудачу извлечены 3 карты. Составить закон распределения числа карт бубновой масти среди отобранных.

Back to top