Кремер Н.Ш. Теория вероятностей и математическая статистика. №001.044, стр.061


Для проведения соревнования 16 волейбольных команд разбиты по жребию на две подгруппы (по восемь команд в каждой). Найти вероятность того, что две наиболее сильные команды окажутся: а) в разных подгруппах; б) в одной подгруппе

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Студент знает 20 из 25 вопросов программы. Зачет считается сданным, если студент ответит не менее чем на 3 из 4 поставленных в билете вопросов. Взглянув на первый вопрос билета, студент обнаружил, что он его знает. Какова вероятность того, что студент: а) сдаст зачет; б) не сдаст зачет?

У сборщика имеется 10 деталей, мало отличающихся друг от друга, из них четыре – первого, по две – второго, третьего и четвертого видов. Какова вероятность того, что среди шести взятых одновременно деталей три окажутся первого вида, два – второго и одна – третьего?

Найти вероятность того, что из 10 книг, расположенных в случайном порядке, 3 определенные книги окажутся рядом.

В старинной игре в кости необходимо было для выигрыша получить при бросании трех игральных костей сумму очков, превосходящую 10. Найти вероятности: а) выпадения 11 очков; б) выигрыша.

На фирме работают 8 аудиторов, из которых 3 – высокой квалификации, и 5 программистов, из которых 2 – высокой квалификации. В командировку надо отправить группу из 3 аудиторов и 2 программистов. Какова вероятность того, что в этой группе окажется, по крайней мере, 1 аудитор высокой квалификации и хоты бы 1 программист высокой квалификации, если каждый специалист имеет равные возможности поехать в командировку?

Два лица условились встретиться в определенном месте с 18 до 19 ч и договорились, что пришедший первым ждёт другого в течение 15 мин., после чего уходит. Найти вероятность их встречи, если приход каждого в течение указанного часа может произойти в любое время, и моменты прихода независимы.

Какова вероятность того, что наудачу брошенная в круг точка окажется внутри вписанного внутри него квадрата?

Back to top