Среди 25 студентов, из которых 15 девушек, разыгрываются 4 билета, причем каждый может выиграть только один билет. Какова вероятность того, что среди обладателей билета окажутся:
а) четыре девушки;
б) четыре юноши;
в) три юноши и одна девушка.
Другие задачи по теории вероятности
Из 20 сбербанков 10 расположены за чертой города. Для обследования случайным образом отобрано 5 сбербанков. Какова вероятность того, что среди отобранных окажется в черте города: а) 3 сбербанка; б) хотя бы один?
Из ящика, содержащего 5 пар обуви, из которых 3 пары мужской, 2 пары женской обуви, перекладывают наудачу 2 пары обуви в другой ящик, содержащий одинаковое количество пар женской и мужской обуви. Какова вероятность того, что во втором ящике после этого окажется одинаковое количество пар мужской и женской обуви?
В магазине имеются 30 телевизоров, причём 20 из них импортных. Найти вероятность того, что среди 5 проданных в течение дня окажется не менее 3 импортных телевизоров, предполагая, что вероятности покупки телевизоров разных марок одинаковы.
Наудачу взятый телефонный номер состоит из 5 цифр. Какова вероятность того, что в нём все цифры а) различные, б) одинаковые, в) нечетные? Известно, что номер не начинается с цифры 0.
Для проведения соревнования 16 волейбольных команд разбиты по жребию на две подгруппы (по восемь команд в каждой). Найти вероятность того, что две наиболее сильные команды окажутся: а) в разных подгруппах; б) в одной подгруппе
Студент знает 20 из 25 вопросов программы. Зачет считается сданным, если студент ответит не менее чем на 3 из 4 поставленных в билете вопросов. Взглянув на первый вопрос билета, студент обнаружил, что он его знает. Какова вероятность того, что студент: а) сдаст зачет; б) не сдаст зачет?
У сборщика имеется 10 деталей, мало отличающихся друг от друга, из них четыре – первого, по две – второго, третьего и четвертого видов. Какова вероятность того, что среди шести взятых одновременно деталей три окажутся первого вида, два – второго и одна – третьего?