Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №463, стр.161


Найти выборочную дисперсию по данному распределению выборки объема n=10:

xi 0,01 0,04 0,08
ni 5 3 2
Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Найти исправленную выборочную дисперсию по данному распределению выборки n=10:

xi 102 104 108
ni 2 3 5

Найти исправленную выборочную дисперсию по данному распределению выборки n=10:

xi 0,01 0,05 0,09
ni 2 3 5

Найти методом моментов по выборке x1, x2,…, xn точечные оценки неизвестных параметров α и β гамма-распределения, плотность которого

$f(x)=\frac{1}{\beta^{\alpha + 1}\cdot\varGamma(\alpha + 1)}\cdot x^{\alpha}\cdot e^{-x/\beta}\ (\alpha>1,\ \beta>0,\ x\ge 0)$.

Случайная величина X (уровень воды в реке по сравнению с номиналом) подчинена гамма-распределению, плотность которого определяется параметрами α и β (α>-1, β>0):

Ниже приведено распределение среднего уровня воды по данным n=45 паводков (в первой строке указан средний уровень воды xi (см); во второй строке приведена частота ni - количество паводков со средним уровнем воды xi):

xi 37,5 62,5 87,5 112,5 137,5 162,5 187,5 250 350
ni 1 3 6 7 7 5 4 8 4

Найти методом моментов точечные оценки неизвестных параметров α и β рассматриваемого гамма-распределения.

Найти методом моментов по выборке x1, x2,…, xn точечные оценки неизвестных параметров λ1 и λ2 «двойного распределения» Пуассона: где xi - число появлений события в ni испытаниях, λ1 и λ2 - положительные числа, причем λ2 > λ1.

Найти методом наибольшего правдоподобия точечную оценку параметра p (вероятность появления события в одном опыте) биномиального распределения:

,

где xi – число появлений события в i-ом опыте (i=1,2,3,…,n), m – количество испытаний в одном опыте, n – число опытов.

Найти методом наибольшего правдоподобия по выборке x1, x2,…, xn точечную оценку неизвестного параметра λ показательного распределения, плотность которого

Back to top