На первом уроке мы с вами научились вычислять определители 2-го и 3-го порядка. На предыдущем уроке мы познакомились с определителями n-го порядка. Сегодня мы научимся вычислять определители n-го порядка разными методами.
Метод понижения порядка
Данный метод основан на следующем соотношении (i-фиксировано):
, где (1)
(2)
называется алгебраическим дополнением элемента и представляет собой определитель (n-1)-го порядка, получающийся из исходного определителя вычеркиванием i-й строки и k-го столбца, на пересечении которых стоит элемент .
Соотношение (1) называется разложением определителя по i-й строке. Аналогично определяется разложение по столбцу.
Прежде чем применять метод понижения порядка желательно, используя основные свойства определителя, обратить в нуль все, кроме одного, элементы его некоторой строки (столбца).
Пример №1 Вычислить определитель матрицы 4-го порядка.
(Кликните по картинке, чтобы увеличить)
1 действие: Из первой строки вычтем удвоенную третью, а ко второй строке прибавим удвоенную третью.
2 действие: Полученный определитель разложим по первому столбцу (вычеркнем первый столбец и третью строку) и не забываем домножить на «4» и на , где i — номер вычеркнутого столбца, а k — номер вычеркнутой строки.
3 действие: Ко второй строки прибавим умноженную на 10 первую строку, а к третьей строке прибавим умноженную на 4 первую строку.
4 действие: Полученный определитель разложим по первому столбцу (вычеркиваем первую строку и первый столбец) и не забываем домножить на «-1».
5 действие: вычисляем определитель второго порядка
Ответ: -1800
Данный способ очень простой, если вникнуть, в конце урока дам еще парочку заданий потренируетесь и поймете, что данный способ лучше других, хотя, возможно, вам подойдут и другие.
Если остались вопросы, пишите в комментариях.
Метод приведения к треугольному виду
Данный метод заключается в таком преобразовании определителя, когда все элементы, лежащие по одну сторону из его дополнений, становятся равными нулю.
Пример №2 Вычислить определитель 4-го порядка
Сделаем пример попроще:
1 действие: Из 2, 3 и 4 строки вычтем первую строку
2 действие: перемножить числа, расположенные по диагонали
Ответ: -8
Данный способ тоже простой, но и не забывайте, что пример также очень простой, с другими числами будет посложнее, но если вникнуть, то все пройдет также легко.
Если что-то непонятно пишите в комментариях.
Метод реккурентных соотношений
Этот метод позволяет выразить данный определитель, преобразуя и разлагая его по строке (столбцу), через определители того же вида, но более низкого порядка.
Данный метод будет очень сложен для вашего понимания, поэтому на нем особо зацикливаться не нужно, потому что вникать в него придется очень долго, а поэтому мы рассмотрим его немного позже.
В принципе, если в задании не указано применять данный способ, то лучше вообще о нем не знать, чтобы не забивать голову сложными расчетами и формулами.
Время еще осталось, давайте еще порешаем…
Пример №3 Вычислить определить матрицы, наиболее удобным для вас способом
Для вычисления определителя данной матрицы я воспользуюсь методом понижения порядка (хотя проще было бы, конечно, использовать правило Саррюса)
И так получилось у меня вот что:
Пример №4
Ну здесь уже правило Саррюса не поможет, поэтому решу его также, как и предыдущее методом понижения порядка.
Я еще не совсем разобрался с редактором формул, особенно, что касается матриц, поэтому делаю по-старому, позже я постараюсь заменить на более качественный ответ, а пока кликните по картинке, чтобы увеличить:
Если кто-то не понял или не разобрался в теме, задавайте вопросы в комментариях.
Уроки по теории вероятности
Прежде чем приступать к ознакомлению с данным уроком настоятельно рекомендую ознакомиться с предыдущим уроком «Определители 2-го и 3-го порядков«. Итак, если с предыдущим уроком все ясно можно переходить к новой теме. Как всегда начнем со скучной теории… Подстановки и инверсии в подстановках Всякое взаимно однозначное отображение π-множества {1, 2, …, n} первых n натуральных чисел на
Начнем с того, что матрица — это математический объект, который записывается в виде прямоугольной таблицы элементов (числа, буквенные значения и т.д.) Теперь вкратце пробежимся по теории. Матрица 2-го порядка , cоставленная из четырех действительных (или комплексных) чисел называется квадратной матрицей 2-го порядка. Определителем матрицы А, называется число Пример № 1 Найдите определитель
Изучение теории вероятностей всегда начинается с комбинаторики, ведь именно она составляет начальную базу, необходимую для дальнейшего углубления материала. Правило произведения и суммы Правило произведения. Если элемент строки () можно выбрать способами и после каждого такого выбора элемент можно выбрать – способами, и после выбора и элемент можно выбрать способами и т.д., наконец, независимо от выбора
Сегодня, на уроке, мы рассмотрим и научимся вычислять такой вид уравнений, как однородные уравнения. Теоретическая часть Однородные уравнения могут быть записаны в виде , а также в виде , где М (x,y) и N (x,y) — однородные функции одной и той же степени. Чтобы решить однородное уравнение, можно сделать замену , после чего получается уравнение
Данная тема будет полезна тем, кто хочет в дальнейшем подробно изучать предмет «Математическая статистика», ну и, конечно, для самых любознательных. Среднее арифметическое Десять учеников засекли время выполнения домашнего задания и получили результаты ( в минутах): 15, 17, 35, 24, 17, 29, 14, 20, 21, 30. Чтобы найти сколько времени в среднем уходит на выполнение домашнего задания