Вариационные ряды и их характеристики Задачи с решениями


  • Вариационные ряды и их графическое изображение. Полигон, гистограмма.
  • Средние величины.
  • Показатели вариации.
  • Упрощенный способ расчета средней арифметической и дисперсии.
  • Начальные и центральные моменты вариационного ряда. Асимметрия и эксцесс.
  • 1
  • 2

Дано распределение признака X - удой коров на молочной ферме за лактационный период (в ц.); n=100 (коров):

Таблица данных

Необходимо:

1) построить полигон (гистограмму), кумуляту и эмпирическую функцию распределения Х;

2) найти:

а) среднюю арифметическую;

б) медиану и моду;

в) дисперсию, среднее квадратическое отклонение и коэффициент вариации;

г) начальные и центральные моменты k-го порядка (k=1, 2, 3, 4);

д) коэффициент асимметрии и эксцесс.

В таблице приведено распределение 50 рабочих по производительности труда X (единиц за смену), разделенных на две группы: 30 и 20 человек.

Таблица данных

Вычислить общие и групповые средние и дисперсии и убедиться в справедливости правила сложения дисперсий.

Для данной выборки: 7,45; 7,40; 7,20; 7,35; 7,40; 7,40; 7,30; 7,50; 7,35.

1) Написать вариационный ряд, найти медиану. 2) Построить эмпирическую функцию распределения. 3) Найти выборочную среднюю, исправленную дисперсию S2. 4) Исходя из нормального закона распределения случайной величины, указать 95-процентный доверительный интервал для M(X), приняв а) σ(X)=0,12; б) σ(X)=S. 5) Указать 95-процентный доверительный интервал для σ(X).

Результаты наблюдения над случайной величиной X оказались лежащими на отрезке (300,600) и были сгруппированы в 10 равновеликих интервалов. Частоты попадания в интервалы приведены в таблице:

Построить гистограмму частот, эмпирическую функцию распределения, найти медиану. Найти выборочное среднее и исправленное среднеквадратическое отклонение s. Указать 95-процентные доверительные интервалы для M(X) и σ(X). С помощью критерия Пирсона проверить гипотезу о нормальном (с параметрами M(X)=xВ, σ(X)=s) законе распределения (уровень значимости α=0,02).

Для данной выборки: 6,45; 6,55; 6,55; 6,35; 6,75; 6,45; 6,25; 6,35; 6,15.

1) Написать вариационный ряд, найти медиану. 2) Построить эмпирическую функцию распределения. 3) Найти выборочную среднюю, исправленную дисперсию s2. 4) Исходя из нормального закона распределения случайной величины, указать 95-процентный доверительный интервал для M(X), приняв а) σ(X)=0,08; б) σ(X)=s. 5) Указать 95-процентный доверительный интервал для σ(X).

Результаты наблюдения над случайной величиной X оказались лежащими на отрезке (120,300) и были сгруппированы в 10 равновеликих интервалов. Частоты попадания в интервалы приведены в таблице:

Построить гистограмму частот, эмпирическую функцию распределения, найти медиану. Найти выборочное среднее и исправленное среднеквадратическое отклонение s. Указать 95-процентные доверительные интервалы для M(X) и σ(X). С помощью критерия Пирсона проверить гипотезу о нормальном (с параметрами M(X)=xВ, σ(X)=s) законе распределения (уровень значимости α=0,02).

  • 1
  • 2
Back to top