Фирма рассылает рекламные проспекты восьми потенциальным партнерам. В результате такой рассылки в среднем у каждого пятого потенциального партнера возникает интерес к фирме. Найти вероятность того, что это произойдет:
а) в трех случаях;
б) не более чем в трех.
Другие задачи по теории вероятности
Лицензия отбирается у любого торгового предприятия, как только торговая инспекция в третий раз обнаружит серьезное нарушение правил торговли. Найти вероятность того, что лицензия будет отобрана после пятой проверки. Известно, что вероятность обнаружения нарушения при одной проверке равна 0,2 и не зависит от результатов предыдущих проверок.
Вероятность рождения мальчика равна 0,515. Найти вероятность того, что в семье, где четверо детей, не менее двух девочек.
В микрорайоне девять машин технической службы. Для бесперебойной работы необходимо, чтобы не меньше восьми машин были в исправном состоянии. Считая вероятность исправного состояния для всех машин одинаковой и равной 0,9, найти вероятность бесперебойной работы технической службы в микрорайоне.
В среднем каждый десятый договор страховой компании завершается выплатой по страховому случаю. Компания заключила пять договоров. Найти вероятность того, что страховой случай наступит:
а) один раз;
б) хотя бы один раз.
Известно, что в некоторой партии, состоящей из 100 деталей, имеется 5 бракованных. Для проверки качества этой партии выбирают наугад 10 деталей. Найти вероятность того, что партия будет забракована, если для этого достаточно, чтобы не менее двух деталей из выбранных оказались бракованными.
Надежности блоков системы, представленной на рисунке равны соответственно p1=0,7, p2=0,7, p3=0,6, p4=0,5, p5=0,5.

Элементы отказывают независимо друг от друга. Найти вероятность безотказной работы заданной схемы соединения блоков.
Два независимых претендента Z и L на пост губернатора края завершают предвыборную кампанию. Каждый из них, независимо от действий другого, может успеть выступить только в одном из городов P и M. Эксперты-политологи считают, что выступления претендентов обязательно состоятся, и оценивают вероятность того, что L предпочтет город P , как равную 2/3. Вероятности выбора городов P и M другим претендентом одинаковы. В таблице показано как, по мнению экспертов, распределяются шансы L по отношению к Z одержать победу на выборах в зависимости от города выступления.
| L\Z | P | M |
| P | 3:1 | 2:1 |
| M | 1:1 | 1:2 |
Найти вероятность того, что победу одержит L.
Отдел надзора отделения центрального банка курирует деятельность ряда коммерческих банков. При сдаче квартальной отчетности серьезные финансовые нарушения обнаруживаются в среднем у 5% банков. На проверку выбрано три банка. Найти наиболее вероятное число банков с серьезными нарушениями финансовой отчетности среди выбранных.
Пусть имеется пять урн. В двух из них лежит по одному белому и трем черным шарам, а в трех урнах — по два белых и два черных шара. Наугад выбирается некоторая урна и из нее вынимается шар. Найти вероятность того, что шар окажется белым.
Три радиостанции, независимо друг от друга, передают самолету один и тот же сигнал. Вероятности того, что самолетом будут приняты эти сигналы, соответственно равны: 0,9, 0,8, 0,75. Найти вероятность того, что самолет примет посылаемый ему сигнал.
В урне находятся 4 белых и 6 черных шаров. Из нее три раза наугад вынимают по одному шару. Требуется найти вероятность того, что все три вынутых шара окажутся белыми (событие A), при выполнении двух разных условий:
а) извлеченные из урны шары обратно не возвращаются;
б) после каждого извлечения шар возвращается обратно.
Среди пациентов туберкулезного диспансера 15% принадлежат к первой категории больных, 66% — ко второй и 19% — к третьей. Вероятности возникновения заболевания, в зависимости от категории больных, равны соответственно 0,12, 0,09, 0,2. Найти:
а) вероятность возникновения заболевания у наугад выбранного пациента диспансера;
б) вероятность принадлежности к третьей категории больных пациента диспансера, у которого обнаружено заболевание.
На экзамен пришли 10 студентов. Трое из них подготовлены отлично, четверо — хорошо, двое — удовлетворительно, один — плохо. В экзаменационных билетах имеется 20 вопросов. Отлично подготовленный студент может ответить на все 20 вопросов, хорошо подготовленный — на 16, удовлетворительно — на 10, плохо — на 5. Студент, сдавший экзамен, ответил на все три заданных вопроса. Найти вероятность того, что этот студент подготовлен: а) отлично; б) плохо.
Пассажир может обратиться за получением билета в одну из трех касс. Вероятности обращения в каждую кассу зависят от их местоположения и равны соответственно p1=1/3, p2=1/6, p3=1/2. Вероятность того, что к моменту прихода пассажира билеты, имевшиеся в кассе, будут распроданы, для первой кассы равна P1=3/4, для второй кассы — P2=1/2, для третьей кассы — P3=2/3. Пассажир направился в одну из касс и приобрел билет. Найти вероятность того, что это была первая касса.
Загружаем...