Наудачу взяты два положительных числа х и у, каждое из которых не превышает двух. Найти вероятность того, что произведение xy будет не больше единицы, а частное не больше двух.
Другие задачи по теории вероятности
Наудачу взяты два положительных числа х и у, каждое из которых не превышает единицы. Найти вероятность того, что сумма х + у не превышает единицы, а произведение ху не меньше 0,09.
В круг радиуса R вписан правильный треугольник. Внутрь круга наудачу брошены четыре точки. Найти вероятности следующих событий: а) все четыре точки попадут внутрь треугольника; б) одна точка попадет внутрь треугольника и по одной точке попадет на каждый «малый» сегмент. Предполагается, что вероятность попадания точки в фигуру пропорциональна площади фигуры и не зависит от ее расположения.
В круг радиуса R вписан правильный треугольник. Внутрь круга наудачу брошены четыре точки. Найти вероятности следующих событий: а) все четыре точки попадут внутрь треугольника; б) одна точка попадет внутрь треугольника и по одной точке попадет на каждый «малый» сегмент. Предполагается, что вероятность попадания точки в фигуру пропорциональна площади фигуры и не зависит от ее расположения.
На стеллаже библиотеки в случайном порядке расставлено 15 учебников, причем пять из них в переплете. Библиотекарь берет наудачу три учебника. Найти вероятность того, что хотя бы один из взятых учебников окажется в переплете (событие А).
В ящике 10 деталей, из которых четыре окрашены. Сборщик наудачу взял три детали. Найти вероятность того, что хотя бы одна из взятых деталей окрашена
Доказать, что если событие А влечет за собой событие В, то Р(В)≥Р(А).
Вероятности появления каждого из двух независимых событий А1 и А2 соответственно равны p1 и р2. Найти вероятность появления только одного из этих событий.