В ящике 10 деталей, из которых четыре окрашены. Сборщик наудачу взял три детали. Найти вероятность того, что хотя бы одна из взятых деталей окрашена
Другие задачи по теории вероятности
Доказать, что если событие А влечет за собой событие В, то Р(В)≥Р(А).
Вероятности появления каждого из двух независимых событий А1 и А2 соответственно равны p1 и р2. Найти вероятность появления только одного из этих событий.
Для сигнализации об аварии установлены два независимо работающих сигнализатора. Вероятность того, что при аварии сигнализатор сработает, равна 0,95 для первого сигнализатора и 0,9 для второго. Найти вероятность того, что при аварии сработает только один сигнализатор.
Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго - 0,8. Найти вероятность того, что при одном залпе в мишень попадает только один из стрелков.
Вероятность одного попадания в цель при одном залпе из двух орудий равна 0,38. Найти вероятность поражения цели при одном выстреле первым из орудий, если известно, что для второго орудия эта вероятность равна 0,8.
Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0,9. Найти вероятность того, что из двух проверенных изделий только одно стандартное.
Вероятность того, что при одном измерении некоторой физической величины будет допущена ошибка, превышающая заданную точность, равна 0,4. Произведены три независимых измерения. Найти вероятность того, что только в одном из них допущенная ошибка превысит заданную точность.
На стеллаже библиотеки в случайном порядке расставлено 15 учебников, причем пять из них в переплете. Библиотекарь берет наудачу три учебника. Найти вероятность того, что хотя бы один из взятых учебников окажется в переплете (событие А).
В круг радиуса R вписан правильный треугольник. Внутрь круга наудачу брошены четыре точки. Найти вероятности следующих событий: а) все четыре точки попадут внутрь треугольника; б) одна точка попадет внутрь треугольника и по одной точке попадет на каждый «малый» сегмент. Предполагается, что вероятность попадания точки в фигуру пропорциональна площади фигуры и не зависит от ее расположения.
В круг радиуса R вписан правильный треугольник. Внутрь круга наудачу брошены четыре точки. Найти вероятности следующих событий: а) все четыре точки попадут внутрь треугольника; б) одна точка попадет внутрь треугольника и по одной точке попадет на каждый «малый» сегмент. Предполагается, что вероятность попадания точки в фигуру пропорциональна площади фигуры и не зависит от ее расположения.
Наудачу взяты два положительных числа х и у, каждое из которых не превышает единицы. Найти вероятность того, что сумма х + у не превышает единицы, а произведение ху не меньше 0,09.
Наудачу взяты два положительных числа х и у, каждое из которых не превышает двух. Найти вероятность того, что произведение xy будет не больше единицы, а частное не больше двух.
Два студента условились встретиться в определенном месте между 12 и 13 часами дня. Пришедший первым ждет второго в течение 1/4 часа, после чего уходит. Найти вероятность того, что встреча состоится, если каждый студент наудачу выбирает момент своего прихода (в промежутке от 12 до 13 часов).
На отрезке ОА длины L числовой оси Ох наудачу поставлены две точки: В(х) и С(у). Найти вероятность того, что длина отрезка ВС окажется меньше, чем L/2. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси.
Загружаем...