Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №032, стр.013


На плоскости начерчены две концентрические окружности, радиусы которых 5 и 10см соответственно. Найти вероятность того, что точка, брошенная наудачу в большой круг, попадет также и в кольцо, образованное построенными окружностями. Предполагается, что вероятность попадания точки в плоскую фигуру пропорциональна площади этой фигуры и не зависит от ее расположения. 

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Внутрь круга радиуса R наудачу брошена точка. Найти вероятность того, что точка окажется внутри вписанного в круг: а) квадрата; б) правильного треугольника. Предполагается, что вероятность попадания точки в часть круга пропорциональна площади этой части и не зависит от ее расположения относительно круга.

Быстро вращающийся диск разделен на четное число равных секторов, попеременно окрашенных в белый и черный цвет. По диску произведен выстрел. Найти вероятность того, что пуля попадет в один из белых секторов. Предполагается, что вероятность попадания пули в плоскую фигуру пропорциональна площади этой фигуры.

На отрезке ОА длины L числовой оси Ох наудачу поставлены две точки В(х) и С(у). Найти вероятность того, что длина отрезка ВС меньше расстояния от точки О до ближайшей к ней точке. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси.

На отрезке ОА длины L числовой оси Ох наудачу поставлены две точки: В(х) и С(у), причем . Найти вероятность того, что длина отрезка ВС окажется меньше, чем L/2. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси. 

На отрезке ОА длины L числовой оси Ох наудачу поставлены две точки: В(х) и С(у). Найти вероятность того, что длина отрезка ВС окажется меньше, чем L/2. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси.  

Два студента условились встретиться в определенном месте между 12 и 13 часами дня. Пришедший первым ждет второго в течение 1/4 часа, после чего уходит. Найти вероятность того, что встреча состоится, если каждый студент наудачу выбирает момент своего прихода (в промежутке от 12 до 13 часов).

Наудачу взяты два положительных числа х и у, каждое из которых не превышает двух. Найти вероятность того, что произведение xy будет не больше единицы, а частное не больше двух.

Back to top