В задаче о стрелках Известны законы распределения случайных величин X и Y - числа очков, выбиваемых 1-м и 2-м стрелками.
xi | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
pi | 0,15 | 0,11 | 0,04 | 0,05 | 0,04 | 0,10 | 0,10 | 0,04 | 0,05 | 0,12 | 0,20 |
yi | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
pi | 0,01 | 0,03 | 0,05 | 0,09 | 0,11 | 0,24 | 0,21 | 0,10 | 0,10 | 0,04 | 0,02 |
Вычислить дисперсию и среднее квадратическое отклонение числа выбитых очков для каждого стрелка.
Другие задачи по теории вероятности
По данным примера 3.8 (задачи о стрелках) вычислить дисперсию случайных величин X, Y, используя свойство 3 – свойство о нахождении дисперсии через разность математического ожидания квадрата случайной величины и квадратом математического ожидания переменной.
Найти дисперсию случайной величины Z=8X-5Y+7, если известно, что случайные величины X и Y независимы и D(X)=1,5, D(Y)=1.
Дан ряд распределения случайной величины X:
xi | 1 | 4 | 5 | 7 |
pi | 0,4 | 0,1 | 0,3 | 0,2 |
Найти и изобразить графически ее функцию распределения.
По многолетним статистическим данным известно, что вероятность рождения мальчика равна 0,515. Составить закон распределения случайной величины Х – числа мальчиков в семье их 4-х детей. Найти математическое ожидание и дисперсию этой случайной величины.
Радист вызывает корреспондента, причем каждый последующий вызов производится лишь в том случае, если предыдущий вызов не принят. Вероятность того, что корреспондент примет вызов равна 0,4. Составить закон распределения числа вызовов, если: а) число вызовов не более 5; б) число вызовов не ограничено. Найти математическое ожидание и дисперсию этой случайной величины.
Среди 10 изготовленных приборов 3 неточных. Составить закон распределения числа неточных приборов среди взятых наудачу четырех приборов. Найти математическое ожидание и дисперсию этой случайной величины.
Ряд распределения дискретной случайной величины состоит из двух неизвестных значений. Вероятность того, что случайная величина примет одно из этих значений, равна 0,8. Найти функцию распределения случайной величины, если ее математическое ожидание равно 3,2, а дисперсия 0,16.