Кремер Н.Ш. Теория вероятностей и математическая статистика. №003.008, стр.103


В задаче о стрелках Известны законы распределения случайных величин X и Y - числа очков, выбиваемых 1-м и 2-м стрелками.

xi 0 1 2 3 4 5 6 7 8 9 10
pi 0,15 0,11 0,04 0,05 0,04 0,10 0,10 0,04 0,05 0,12 0,20

 

yi 0 1 2 3 4 5 6 7 8 9 10
pi 0,01 0,03 0,05 0,09 0,11 0,24 0,21 0,10 0,10 0,04 0,02

Вычислить дисперсию и среднее квадратическое отклонение числа выбитых очков для каждого стрелка.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

По данным примера 3.8 (задачи о стрелках) вычислить дисперсию случайных величин X, Y, используя свойство 3 – свойство о нахождении дисперсии через разность математического ожидания квадрата случайной величины и квадратом математического ожидания переменной.

Найти дисперсию случайной величины Z=8X-5Y+7, если известно, что случайные величины X и Y независимы и D(X)=1,5, D(Y)=1.

Дан ряд распределения случайной величины X:

xi 1 4 5 7
pi 0,4 0,1 0,3 0,2

Найти и изобразить графически ее функцию распределения.

По многолетним статистическим данным известно, что вероятность рождения мальчика равна 0,515. Составить закон распределения случайной величины Х – числа мальчиков в семье их 4-х детей. Найти математическое ожидание и дисперсию этой случайной величины.

Радист вызывает корреспондента, причем каждый последующий вызов производится лишь в том случае, если предыдущий вызов не принят. Вероятность того, что корреспондент примет вызов равна 0,4. Составить закон распределения числа вызовов, если: а) число вызовов не более 5; б) число вызовов не ограничено. Найти математическое ожидание и дисперсию этой случайной величины.

Среди 10 изготовленных приборов 3 неточных. Составить закон распределения числа неточных приборов среди взятых наудачу четырех приборов. Найти математическое ожидание и дисперсию этой случайной величины.

Ряд распределения дискретной случайной величины состоит из двух неизвестных значений. Вероятность того, что случайная величина примет одно из этих значений, равна 0,8. Найти функцию распределения случайной величины, если ее математическое ожидание равно 3,2, а дисперсия 0,16.

Найти математическое ожидание случайной величины Z=8Х-5Y+7, если известно, что М(Х)=3, М(Y)=2.

Вычислить М(Х) для случайной величины Х чистого выигрыша по данным примера 3.1: В лотерее разыгрываются: автомобиль стоимостью 5000 ден.ед., 4 телевизора стоимостью 250 ден.ед., 5 видеомагнитофонов стоимостью 200 ден.ед. Всего продается 1000 билетов по 7 ден.ед.

Вычислить М(Х) и M(Y) в задаче о стрелках. Известны законы распределения случайных величин X и Y - числа очков, выбиваемых 1-м и 2 стрелками.

xi 0 1 2 3 4 5 6 7 8 9 10
pi 0,15 0,11 0,04 0,05 0,04 0,10 0,10 0,04 0,05 0,12 0,20

 

Даны законы распределения двух независимых случайных величин:

X:

xi 0 2 4
pi 0,5 0,2 0,3

Y:

yi -2 0 2
pj 0,1 0,6 0,2

Найти закон распределения случайных величин: а) Z=Х-Y; б) U = XY.

Дана случайная величина X:

xi -2 1 2
pj 0,5 0,3 0,2

Найти закон распределения случайных величин: а) Y = 3X, б) Z = X2.

Вероятности того, что студент сдаст семестровый экзамен в сессию по дисциплинам А и В, равны соответственно 0,7 и 0,9. Составить закон распределения числа семестровых экзаменов, которые сдаст студент.

В лотерее разыгрываются: автомобиль стоимостью 5000 ден.ед., 4 телевизора стоимостью 250 ден.ед., 5 видеомагнитофонов стоимостью 200 ден.ед. Всего продается 1000 билетов по 7 ден.ед. Составить закон распределения чистого выигрыша, полученного участником лотереи, купившим один билет.

Back to top