Имеется 50 экзаменационных билетов, каждый из которых содержит по два вопроса. Экзаменующийся знает ответ не на все 100 вопросов, а только на 60. Определить вероятность того, что экзамен будет сдан, если для этого достаточно ответить на оба вопроса из своего билета, или на один вопрос из своего билета, или на один (по выбору преподавателя) вопрос из дополнительного билета.
Другие задачи по теории вероятности
Прибор состоит из двух узлов: работа каждого узла безусловно необходима для работы приборы в целом. Надежность (вероятность безотказной работы в течение времени t) первого узла равна 0,8, второго – 0,9. Прибор испытывался в течение времени t, в результате чего обнаружено, что он вышел из строя (отказал). Найти вероятность того, что отказал только первый узел, а второй исправен.
В группе из 10 студентов, пришедших на экзамен, 3 подготовлено отлично, 4 – хорошо, 2 – посредственно и 1 – плохо. В экзаменационных билетах имеется 20 вопросов. Отлично подготовленный студент может ответить на все 20 вопросов, хорошо подготовленный – на 16, посредственно – на 10, плохо – на 5. Вызванный наугад студент ответил на три произвольно заданных вопроса. Найти вероятность того, что студент подготовлен: а) отлично; б) плохо.
Вероятность изготовления на автоматическом станке стандартной детали равна 0,8. Найти вероятность возможного числа появления бракованных деталей среди 5 отобранных.
По данным примера 2.1 найти наивероятнейшее число появления бракованных деталей из 5 отобранных и вероятность этого числа.
Сколько раз необходимо подбросить игральную кость, чтобы наивероятнейшее выпадение тройки было равно 10?
На факультете насчитывается 1825 студентов. Какова вероятность того, что 1 сентября является днем рождения одновременно четырех студентов факультета?
В некоторой местности из каждых 100 семей 80 имеют холодильники. Найти вероятность того, что из 400 семей 300 имеют холодильники.