В одной урне 5 белых и 6 черных шаров, а в другой – 4 белых и 8 черных шаров. Из первой урны случайным образом вынимают 3 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Другие задачи по теории вероятности
В лифт семиэтажного дома на первом этаже вошли три человека. Каждый из них с одинаковой вероятностью выходит на любом из этажей, начиная со второго. Найти вероятность того, что все пассажиры выйдут: а) на четвертом этаже; б) на одном и том же этаже; в) на разных этажах.
Батарея, состоящая из 3 орудий, ведет огонь по группе, состоящей из 5 самолетов. Каждое орудие выбирает себе цель случайно и независимо от других. Найти вероятность того, что все орудия будут стрелять: а) по одной и той же цели; б) по разным целям.
20 человек случайным порядком рассаживаются за столом. Найти вероятность того, что два фиксированных лица А и В окажутся рядом, если а) стол круглый; б) стол прямоугольный, а 20 человек рассаживаются случайно вдоль одной из его сторон.
Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча; после игры их кладут обратно. При выборе мячей игранные от не игранных не отличаются. Какова вероятность того, что после трёх игр в коробке не останется не игранных мячей?
Завод выпускает определенного типа изделия; каждое изделие имеет дефект с вероятностью 0,7. После изготовления изделие осматривается последовательно тремя контролёрами, каждый из которых обнаруживает дефект с вероятностями 0,8, 0,85, 0,9 соответственно. В случае обнаружения дефекта изделие бракуется. Определить вероятность того, что изделие: 1) будет забраковано; 2) будет забраковано: а) вторым контролёром; б) всеми контролерами.
Из полной колоды карт (52 карты) выбирают шесть карт; одну из них смотрят; она оказывается тузом, после чего её смешивают с остальными выбранными картами. Найти вероятность того, что при повторном извлечении карты из этих шести мы снова получим туз.
В урне 2 белых и 3 черных шара. Два игрока поочередно вынимают из урны по шару, не вкладывая их обратно. Выигрывает тот, кто раньше получит белый шар. Найти вероятность того, что выиграет первый игрок.