Кремер Н.Ш. Теория вероятностей и математическая статистика. №001.075, стр.065


Вся продукция цеха проверяется двумя контролёрами, причём первый контролёр проверяет 55% изделий, а второй – остальные. Вероятность того, что первый контролёр пропустит нестандартное изделие, равна 0,01, второй – 0,02. Взятое наудачу изделие маркированное как стандартное оказалось нестандартным. Найти вероятность того, что это изделие проверялось вторым контролёром.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Вероятность изготовления изделия с браком на данном предприятии равна 0,04. Перед выпуском изделие подвергается упрощенной проверке, которая в случае бездефектного изделия пропускает его с вероятностью 0,96, а в случае изделия с дефектом – с вероятностью 0,05. Определить: а) какая часть изготовленных изделий выходит с предприятия; б) какова вероятность того, что изделие, выдержавшее упрощенную проверку, бракованное?

В одной урне 5 белых и 6 черных шаров, а в другой – 4 белых и 8 черных шаров. Из первой урны случайным образом вынимают 3 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.

В лифт семиэтажного дома на первом этаже вошли три человека. Каждый из них с одинаковой вероятностью выходит на любом из этажей, начиная со второго. Найти вероятность того, что все пассажиры выйдут: а) на четвертом этаже; б) на одном и том же этаже; в) на разных этажах.

Батарея, состоящая из 3 орудий, ведет огонь по группе, состоящей из 5 самолетов. Каждое орудие выбирает себе цель случайно и независимо от других. Найти вероятность того, что все орудия будут стрелять: а) по одной и той же цели; б) по разным целям.

20 человек случайным порядком рассаживаются за столом. Найти вероятность того, что два фиксированных лица А и В окажутся рядом, если а) стол круглый; б) стол прямоугольный, а 20 человек рассаживаются случайно вдоль одной из его сторон.

Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча; после игры их кладут обратно. При выборе мячей игранные от не игранных не отличаются. Какова вероятность того, что после трёх игр в коробке не останется не игранных мячей?

Завод выпускает определенного типа изделия; каждое изделие имеет дефект с вероятностью 0,7. После изготовления изделие осматривается последовательно тремя контролёрами, каждый из которых обнаруживает дефект с вероятностями 0,8, 0,85, 0,9 соответственно. В случае обнаружения дефекта изделие бракуется. Определить вероятность того, что изделие: 1) будет забраковано; 2) будет забраковано: а) вторым контролёром; б) всеми контролерами.

Back to top