Другие задачи по теории вероятности
Найти вероятность по данным вероятностям:
,
,
.
Наступление события AB необходимо влечет наступление событие C. Доказать, что P(A)+P(B)-P(C)<1.
Доказать что, . Предполагается, что P(A)>0.
Наступление события необходимо влечет наступление события
. Доказать, что
.
Вывести теорему сложения вероятностей для трех совместных событий:
P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)
Предполагается, что для двух совместных событий теорема сложения уже доказана:
P(A1+A2)= P(A1)+ P(A2)- P(A1A2)
Даны три попарно независимых события А, В, С, которые, однако, все три вместе произойти не могут. Предполагая, что все они имеют одну и ту же вероятность р, найти наибольшее возможное значение р.
В электрическую цепь последовательно включены три элемента, работающие независимо один от другого. Вероятности отказов первого, второго и третьего элементов соответственно равны: p1=0,1; p2=0,15; р3=0,2. Найти вероятность того, что тока в цепи не будет.
Найти вероятность по данным вероятностям:
,
.
По данным переписи населения (1891г.) Англии и Уэльса установлено: темноглазые отцы и темноглазые сыновья составили 5% обследованных лиц, темноглазые отцы и светлоглазые сыновья - 7,9%, светлоглазые отцы и темноглазые сыновья - 8,9%, светлоглазые отцы и светлоглазые сыновья - 78,2%. Найти связь между цветом глаз отца и сына.
В мешочке содержится 10 одинаковых кубиков с номерами от 1 до 10. Наудачу извлекают по одному три кубика. Найти вероятность того, что последовательно появятся кубики с номерами 1, 2, 3, если кубики извлекаются: а) без возвращения; б) с возвращением (извлеченный кубик возвращается в мешочек).
Студент знает 20 из 25 вопросов программы. Найти вероятность того, что студент знает предложенные ему экзаменатором три вопроса.
В урне имеется пять шаров с номерами от 1 до 5. Наудачу по одному извлекают три шара без возвращения. Найти вероятности следующих событий: а) последовательно появятся шары с номерами 1, 4, 5; б) извлеченные шары будут иметь номера 1, 4, 5 независимо от того, в какой последовательности они появились.
В ящике 10 деталей, среди которых шесть окрашенных. Сборщик наудачу извлекает четыре детали. Найти вероятность того, что все извлеченные детали окажутся окрашенными.
В цехе работают семь мужчин и три женщины. По табельным номерам наудачу отобраны три человека. Найти вероятность того, что все отобранные лица окажутся мужчинами.
Загружаем...