Свободный источник №1.2.0001


Обучающая машина-экзаменатор содержит два набора вопросов: 1 – состоит из 5 трудных и 25 легких вопросов, 2 – 20 трудных и 10 легких. Машина с заданной вероятностью выбирает набор, затем случайно выбирает вопрос и предъявляет его экзаменующемуся. Как нужно задать вероятности выбора 1 и 2 наборов, чтобы использовать в среднем одинаковое число трудных и легких вопросов, т.е. уровнять вероятности предъявления трудных и легких вопросов?

Скачать решение бесплатно Купить решение
      * Оплата через Я.Деньги.

Другие задачи по теории вероятности

Найти вероятность того, что абонент наберет правильный двузначный номер, если он знает, что данный номер не делится на 5.

Вероятности попадания при каждом выстреле для трех стрелков равны соответственно 0,2, 0,4, 0,6. При одновременном выстреле всех трех стрелков имелось одно попадание. Определить вероятность того, что попал первый стрелок.

В магазин поступили телевизоры от трех фирм. На долю первой фирмы приходится 50% общего числа поставок, на долю второй фирмы – 20%, а на долю третьей фирмы – 30%. Из практики известно, что бракованными оказываются 4% телевизоров, поставляемых первой фирмой, 3% - поставляемых второй фирмой и 5% - поставляемых третьей фирмой.

1) Найти вероятность того, что купленный в данном магазине телевизор окажется бракованным.

2) Найти вероятность того, что купленный в магазине и оказавшийся бракованным телевизор, был произведен первой фирмой.

На склад поступает продукция 3-х фабрик, причем продукция 1-ой фабрики составляет 20%, 2-ой46%, 3-ей34%. Известно, что средний процент нестандартных изделий для первой фабрики равен 3%, для второй – 2%, для третьей – 1%. Найти вероятность того, что наудачу взятое изделие произведено на первой фабрике, если оно оказалось нестандартным.

В урне находятся 30 шаров, из них 15 белых, 8 черных и 7 красных. Определить вероятность извлечения красного или черного шара.

В цехе шесть моторов. Для каждого мотора вероятность того, что он в данный момент включен, равна 0,8. Найти вероятность того, что в данный момент включено четыре мотора.

Вероятность надежной работы конструкции при приложении нагрузки равна 0,96. Найти вероятность того, что из 10 конструкций, испытанных независимо друг от друга, больше двух выйдут из строя.

Back to top