Непрерывная случайная величина задана интегральной функцией (функцией распределения) F(x). Найти а) вероятность попадания случайной величины Х в интервал (a;b); б) дифференциальную функцию (функцию плотности вероятностей) f(x); в) математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х; г) построить графики функций F(x) и f(x).
Другие задачи по теории вероятности
Дана плотность распределения f(x) случайной величины Х. Найти параметр с, математическое ожидание М(Х), дисперсию D(X), функцию распределения случайной величины Х, вероятность выполнения неравенства -1,5< X< 0,3, построить графики функций F(x) и f(x).
Непрерывная случайная величина задана интегральной функцией (функцией распределения) F(х). Найти: а) вероятность попадания случайной величины X в интервал (a,b); б) дифференциальную функцию (функцию плотности вероятностей) f(x); в) математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины X; г) построить графики функций F(х) и f(х).
Дана плотность распределения f(х) случайной величины X. Найти параметр с, математическое ожидание М(Х), дисперсию D(Х), функцию распределения случайной величины X, вероятность выполнения неравенства –1<X<0, построить графики функций F(x) и f(x).
Посадочная ступень летательного аппарата совершает автоматическую посадку на площадку, по которой разбросаны камни, образующие равномерное пуассоновское поле со средней плотностью один камень на 30м2. Определить вероятность безаварийной посадки, если она осуществляется при условии, что в зоне опор (равносторонний треугольник со стороной 1м) не окажется камней. (При решении задачи размером камней пренебречь).
Обучающая машина-экзаменатор содержит два набора вопросов: 1 – состоит из 5 трудных и 25 легких вопросов, 2 – 20 трудных и 10 легких. Машина с заданной вероятностью выбирает набор, затем случайно выбирает вопрос и предъявляет его экзаменующемуся. Как нужно задать вероятности выбора 1 и 2 наборов, чтобы использовать в среднем одинаковое число трудных и легких вопросов, т.е. уровнять вероятности предъявления трудных и легких вопросов?
Найти вероятность того, что абонент наберет правильный двузначный номер, если он знает, что данный номер не делится на 5.
Вероятности попадания при каждом выстреле для трех стрелков равны соответственно 0,2, 0,4, 0,6. При одновременном выстреле всех трех стрелков имелось одно попадание. Определить вероятность того, что попал первый стрелок.