Составление дифференциального уравнения семейства кривых


Составление уравнений семейства кривых

Чтобы построить дифференциальное уравнение, которому удовлетворяют кривые семейства:

φ          (1)

необходимо продифференцировать равенство (1) n раз, считая y функцией от x, а затем из полученных уравнений и уравнения (1) исключить произвольные постоянные C1 … Cn.

Изогональные траектории

Линии, пересекающие все кривые данного семейства под одним и тем же углом ϕ, называются изогональными траекториями. Углы β и α наклона траектории и кривой к оси Ox связаны соотношением β = α ± φ.

Пусть

— дифференциальное уравнение данного семейства кривых, а

— уравнение семейства изогональных траекторий.

Тогда tg α = f (x,y), tg β = f1 (x,y).

Отсюда следует, что если дифференциальное уравнение семейства кривых написано и угол φ известен, то найти tg β не составит труда, а после также легко можно будет написать уравнение траекторий.

Частный случай:

Если уравнение семейства кривых записано в виде:

,

то при составлении уравнения траекторий можно обойтись без решения уравнения относительно y’, в этом случае будет достаточно y’ заменить на tg α = tg (β ± φ), где tg β = y’ — угловой коэффициент касательной к траектории.

Пример №1

Составить дифференциальное уравнение семейства кривых:

  • Так как уравнение содержит два параметра (С1 и С2), то и дифференцировать будем два раза:

Первая производная:

Вторая производная:

  • Дальше, чтобы составить дифференциальное уравнение семейства кривых необходимо избавиться от С1 , а для этого выведем его из уравнения первой производной С1 = -2(y — С2)y’ и подставим в наше уравнение:

      (2)

  • Теперь также нужно избавиться от параметра C2, а для этого выведем ее из второй производной: y — C2 = -y’2 / y» и подставим это в (2):

  • Ну и наконец упростим полученное уравнение и получим:

Пример №2

Для закрепления составим еще одно уравнение:

Решение абсолютно идентично предыдущему, за исключением того, что вместо параметров С1 и С2 здесь представлены параметры a, b и с. Ну и, конечно, раз параметров три, то нам понадобятся производные первого, второго и третьего порядка.

Делать описание каждого шага я уже не буду,  думаю вы уже сами разберетесь:

Первая производная:

Вторая производная:

Третья производная:

Ответ:

Ну, думаю, если вы разобрались в первыми двумя примерами, то все остальные вы решите без труда, а чтобы это проверить дам вам парочку заданий «на дом».

Пример №3 

Выразим коэффициенты a и b через 1-ую и 2-ую производные:

Первая производная: , где

Вторая производная: , где

Подставим значение b второй производной в значение a первой производной:

А теперь подставим полученные значения a и b в исходное уравнение и упростим:

⇒ 

Ответ

Пример №4

Ну а здесь все еще проще:

Найдем производную:

Возведем обе части уравнения в квадрат:

Чтобы воспользоваться основным тригонометрическим тождеством, вычтем из единицы обе части уравнения:

Ну и теперь как мы видим во второй части получилось исходное уравнение, только в квадрате, а значит оно будет равно:

И, следовательно,

Приведем к общему виду и запишем ответ:

Ответ: 

Ну и на этой ноте мы с вами закончим данный урок, всем спасибо!

 

 

Если вам что-то непонятно (или нашли неточности в уроке) пишите в комментариях и мы вам обязательно ответим в ближайшее время.

Уроки по теории вероятности

Первая тема, которую я бы хотел рассмотреть на уроках элементарной алгебры — это выражения. Числовые выражения Числовые выражения — это выражения, состоящие только из цифр и знаков арифметических действий. Число, которое получается в результате выполнения действий в числовом выражении, называют значением выражения. Пример №1 Найти значение выражения: 12 * 6 — 16 : 4 Значение

Курс данного предмета мы начнем непосредственно с матриц, потому что именно они составляют основу данной дисциплины. Определение матрицы Матрицей  размерности называется прямоугольная таблица чисел, содержащая — строк и — столбцов, число расположенное в -ой строке и -столбце обозначается и называется элементом матрицы , т. е. Операции над матрицами Рассмотрим основные операции, проводимые над матрицами: сумма матриц;

Данная статья занесена в архив так как написана новая, возможно более понятная статья, переходите по ссылке на нее http://mathcentr.ru/matritsa-i-operatsii-nad-nej/ Как вы, наверное, уже поняли матрицы ничем не отличаются от обычных чисел, по правде говоря — это просто много цифр в одном числе))) И разумеется, существуют такие же операции над матрицами, как и над числами, но не все и

Продолжаем изучать матрицы и сегодня на уроке мы научимся находить и вычислять обратную матрицу. Обратная матрица Матрица называется транспонированной к матрице , если выполняется условие: , для всех , где и — элементы матриц и соответственно. Проще говоря, транспонированная матрица — это перевернутая матрица, т.е. столбцы записаны строками, а строки столбцами. Пример №1 Транспонировать матрицу

Мы рассмотрели самые основные тригонометрические функции (не обольщайтесь помимо синуса, косинуса, тангенса и котангенса существует еще целое множество других функций, но о них позже), а пока рассмотрим некоторые основные свойства уже изученных функций. Тригонометрические функции числового аргумента Какое бы действительное число ни взять, ему можно поставить в соответствие однозначно определенное число . Правда, правило соответствия

Back to top