Завод изготавливает изделия, каждое из которых с вероятностью p имеет дефект, в цехе изделия осматриваются с равными вероятностями одним из двух контролеров. Первый обнаруживает имеющиеся дефекты с вероятностью p1, а второй — с вероятностью p2. Известно, что одно из изделий забраковано. Найти вероятность того, что оно забраковано: а) первым контролером; б) вторым контролером.
Другие задачи по теории вероятности
На предприятии работают 10 рабочих шестого разряда, 15 рабочих пятого разряда и 5 рабочих четвертого разряда. Вероятность того, что изделие, изготовленное рабочим соответствующего разряда, будет одобрено ОТК, равна соответственно 0,95, 0,9 и 0,8. Найти вероятность того, что изделие, проверенное ОТК, будет одобрено, при условии, что производительность всех рабочих одинакова.
На склад поступила однотипная продукция с трех фабрик. Объемы поставок относятся соответственно как 1:2:7. Известно, что нестандартных изделий среди продукции первой фабрики — 3%, второй — 2%, третьей — 1%. Найти вероятности следующих событий: а) взятое наугад со склада изделие окажется нестандартным; б) взятое наугад со склада изделие произведено первой фабрикой, если известно, что оно оказалось нестандартным.
Имеется ящик, в котором лежат 20 коробок по 10 карандашей. При вскрытии ящика 4 коробки уронили, и грифели карандашей в них сломались. Однако все 20 коробок были сданы на склад, откуда затем взяли 2 коробки и раздали карандаши ученикам. Найти вероятность того, что доставшийся ученику карандаш имеет сломанный грифель.
Две машинистки печатали рукопись, посменно заменяя друг друга. Первая в конечном итоге напечатала 1/3 всей рукописи, а вторая — остальное. Первая машинистка делает ошибки с вероятностью 0,15, а вторая — с вероятностью 0,1. При проверке на 13-й странице обнаружена ошибка. Найти вероятность того, что ошиблась первая машинистка.
Пассажир может обратиться за получением билета в одну из трех касс. Вероятности обращения в каждую кассу зависят от их местоположения и равны соответственно p1=1/3, p2=1/6, p3=1/2. Вероятность того, что к моменту прихода пассажира билеты, имевшиеся в кассе, будут распроданы, для первой кассы равна P1=3/4, для второй кассы — P2=1/2, для третьей кассы — P3=2/3. Пассажир направился в одну из касс и приобрел билет. Найти вероятность того, что это была первая касса.
На экзамен пришли 10 студентов. Трое из них подготовлены отлично, четверо — хорошо, двое — удовлетворительно, один — плохо. В экзаменационных билетах имеется 20 вопросов. Отлично подготовленный студент может ответить на все 20 вопросов, хорошо подготовленный — на 16, удовлетворительно — на 10, плохо — на 5. Студент, сдавший экзамен, ответил на все три заданных вопроса. Найти вероятность того, что этот студент подготовлен: а) отлично; б) плохо.
Среди пациентов туберкулезного диспансера 15% принадлежат к первой категории больных, 66% — ко второй и 19% — к третьей. Вероятности возникновения заболевания, в зависимости от категории больных, равны соответственно 0,12, 0,09, 0,2. Найти:
а) вероятность возникновения заболевания у наугад выбранного пациента диспансера;
б) вероятность принадлежности к третьей категории больных пациента диспансера, у которого обнаружено заболевание.