В городе проживает n+1 человек. Один из них, узнав новость, сообщает ее другому, тот — третьему и т.д., причем каждый человек передает новость, наугад выбранному жителю города, за исключением того, от кого он ее услышал. Найти вероятность того, что новость будет передана r раз без возвращения к человеку, который узнал ее первым.
Другие задачи по теории вероятности
Из 25 вопросов, включенных в программу экзамена, студент подготовил 20. На экзамене студент наугад выбирает 5 вопросов из 25. Для сдачи экзамена достаточно ответить правильно хотя бы на 3 вопроса. Найти вероятность того, что студент сдаст экзамен.
Двое поочередно бросают монету. Выигрывает тот, у которого раньше выпадет «герб». Определить вероятности выигрыша для каждого из игроков.
В кармане лежат 5 монет достоинством в 50коп., 4 монеты по 10коп. и 1 монета — 5коп. Наугад берут 3 монеты. Какова вероятность того, что в сумме они составляют не более одного рубля?
Из 30 билетов, включенных в программу экзамена, студент знает 5. Когда ему выгоднее сдавать экзамен первым или вторым (с точки зрения увеличения вероятности сдачи экзамена)?
Для подготовки к экзамену студенту предложено 20 вопросов. Билет содержит два вопроса. Комплектование билетов вопросами осуществляется случайным образом. Студент подготовил 15 вопросов. Найти вероятность того, что он сдаст экзамен, если для этого достаточно ответить правильно на два вопроса своего билета или на один вопрос своего билета и один вопрос по выбору преподавателя.
Игральная кость подбрасывается до тех пор, пока не выпадет 6 очков. Найти вероятность того, что кость придется подбрасывать не менее 3 раз.
Некто нашел чужую пластиковую карточку банкомата. Найти вероятность того, что двух попыток, предоставляемых банкоматом, хватит для того, чтобы отгадать неизвестный ему четырехзначный код.