Кремер Н.Ш. Теория вероятностей и математическая статистика. №003.031, стр.136


В билете три задачи. Вероятность правильного решения первой задачи равна 0,9, второй – 0,8, третьей – 0,7. Составить закон распределения числа правильно решенных задач в билете и вычислить математическое ожидание и дисперсию этой случайной величины.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Вероятность попадания в цель при одном выстреле равна 0,8 и уменьшается с каждым выстрелом на 0,1. Составить закон распределения числа попаданий в цель, если сделано три выстрела. Найти математическое ожидание, дисперсию и среднеквадратичное отклонение этой случайной величины.

Произведено два выстрела в мишень. Вероятность попадания в мишень первым стрелком равна 0,8, вторым – 0,7. Составить закон распределения числа попаданий в мишень. Найти математическое ожидание, дисперсию и функцию распределения этой случайной величины и построить её график. (Каждый стрелок делает по одному выстрелу.)

Найти закон распределения числа пакетов трех акций, по которым владельцем будет получен доход, если вероятность получения дохода по каждому из них равна соответственно 0,5, 0,6, 0,7. Найти математическое ожидание и дисперсию данной случайной величины, построить функцию распределения.

Дан ряд распределения случайной величины X:

xi 2 4
pi p1 p2

Найти функцию распределения этой случайной величины, если её математическое ожидание равно 3,4, а дисперсия равна 0,84.

Из пяти гвоздик две белые. Составить закон распределения и найти функцию распределения случайной величины, выражающей число белых гвоздик среди двух одновременно взятых.

Из десяти телевизоров на выставке 4 оказались фирмы «Сони». Наудачу для осмотра выбрано 3. Составить закон распределения числа телевизоров фирмы «Сони» среди 3 отобранных.

Среди 15 собранных агрегатов 6 нуждаются в дополнительной смазке. Составить закон распределения числа агрегатов, нуждающихся в дополнительной смазке, среди пяти наудачу отобранных из общего числа.

Back to top