Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №127, стр.042


Вероятность появления события в каждом из 21 независимых испытаний равна 0,7. Найти вероятность того, что событие появится в большинстве испытаний.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Монета брошена 2N раз (N велико!). Найти вероятность того, что число выпадений «герба» будет заключено между числами и .

Вероятность появления события в каждом из независимых испытаний равна 0,8. Сколько нужно произвести испытаний, чтобы с вероятностью 0,9 можно было ожидать, что событие появится не менее 75 раз?

Вероятность появления положительного результата в каждом из n опытов равна 0,9. Сколько нужно произвести опытов, чтобы с вероятностью 0,98 можно было ожидать, что не менее 150 опытов дадут положительный результат?

Вероятность появления события в каждом из 625 независимых испытаний равна 0,8. Найти вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на 0,04.

Вероятность появления события в каждом из 900 независимых испытаний равна 0,5. Найти вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на 0,02.

Вероятность появления события в каждом из 10000 независимых испытаний равна 0,75. Найти вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на 0,01.

Французский ученый Бюффон (XVIIIв.) бросил монету 4040 раз, причем «герб» появился 2048 раз. Найти вероятность того, что при повторении опыта Бюффона относительная частота появления «герба» отклонится от вероятности появления «герба» по абсолютной величине не более чем в опыте Бюффона.

Back to top