Два игрока поочередно бросают игральную кость. Выигрывает тот, у которого первым выпадет «6 очков». Какова вероятность выигрыша для игрока, бросающего игральную кость первым? Вторым?
Другие задачи по теории вероятности
Вероятность попадания в мишень при каждом выстреле для 1-го стрелка равна 0,7, а для 2-го - 0,8. Оба они делают по одному выстрелу по мишени, а затем каждый из стрелков стреляет еще раз, если при первом сделанном им выстреле он промахнулся. Найти вероятность того, что в мишени ровно 2 пробоины.
В торговую фирму поступили телевизоры от трех поставщиков в отношении 1:4:5. Практика показала, что телевизоры, поступающие от 1-го, 2-го и 3-го поставщиков, не потребуют ремонта в течение гарантийного срока соответственно в 98, 88 и 92% случаев.
1) Найти вероятность того, что поступивший в торговую фирму телевизор не потребует ремонта в течение гарантийного срока.
2) Проданный телевизор потребовал ремонта в течение гарантийного срока. От какого поставщика вероятнее всего поступил этот телевизор?
Известно, что в среднем 95% выпускаемой продукции удовлетворяют стандарту. Упрощенная схема контроля признает пригодной продукцию с вероятностью 0,98, если она стандартна, и с вероятностью 0,06, если она нестандартна. Определить вероятность того, что:
1) взятое наудачу изделие пройдет упрощенный контроль;
2) изделие стандартное, если оно:
а) прошло упрощенный контроль;
б) дважды прошло упрощенный контроль.
Два стрелка независимо друг от друга стреляют по мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка равна 0,8; для второго — 0,4. После стрельбы в мишени обнаружена одна пробоина. Какова вероятность того, что она принадлежит: а) 1-му стрелку; б) 2-му стрелку?
По результатам проверки контрольных работ оказалось, что в первой группе получили положительную оценку 20 студентов из 30, а во второй 15 - из 25. Найти вероятность того, что наудачу выбранная работа, имеющая положительную оценку, написана студентом 1-ой группы.
Экспедиция издательства отправила газеты в три почтовых отделения. Вероятность своевременной доставки газет в первое отделение равна 0,95, во второе отделение – 0,9 и в третье – 0,8. Найти вероятность следующих событий: а) только одно отделение получит газеты вовремя, б) хотя бы одно отделение получит газеты с опозданием.
Студент разыскивает нужную ему формулу в трёх справочниках. Вероятность того, что формула содержится в первом, втором и третьем справочниках, равна соответственно 0,6, 0,7 и 0,8. Найти вероятность того, что эта формула содержится не менее, чем в двух справочниках.