Непрерывные случайные величины и их характеристики Задачи с решениями


  • Закон распределения.
  • Функция распределения и плотность вероятности.
  • Математическое ожидание.
  • Дисперсия.
  • Среднеквадратическое отклонение.
  • Теоретические моменты.
  • Мода и медиана.
  • Квантиль.
  • Асимметрия и эксцесс.

Случайная величина X при x≥0 задана плотностью вероятности (распределение Вейбулла):

f(x)=0 при x<0. Найти моду X.

Доказать, что математическое ожидание непрерывной случайной величины заключено между наименьшим и наибольшим ее возможными значениями.

Случайная величина X в интервале (-c,c) задана плотностью распределения:

Вне этого интервала f(x)=0. Найти дисперсию X.

Случайная величина X в интервале (-3,3) задана плотностью распределения:

Вне этого интервала f(x)=0. а) Найти дисперсию X; б) что вероятнее: в результате испытания окажется X<1 или Х>1?

Доказать, что дисперсию непрерывной случайной величины X можно вычислить по формуле:

Случайная величина X в интервале (0,π) задана плотностью распределения f(x)=(1/2)Sinx; вне этого интервала f(x)=0. Найти дисперсию X.

Случайная величина X в интервале (0,5) задана плотностью распределения f(x)=(2/25)x; вне этого интервала f(x)=0. Найти дисперсию X.

Случайная величина задана функцией распределения:

Найти математическое ожидание, дисперсию и среднеквадратическое отклонение X.

Случайная величина X в интервале (0,π) задана плотностью распределения f(x)=(1/2)Sinx; вне этого интервала f(x)=0. Найти дисперсию функции Y=φ(x)=X2, не находя предварительно плотности распределения Y.

Случайная величина X в интервале (0,π/2) задана плотностью распределения f(x)=Cosx; вне этого интервала f(x)=0. Найти дисперсию функции Y=φ(x)=X2, не находя предварительно плотности распределения Y.

Случайная величина X задана плотностью распределения:

Найти: а) математическое ожидание; б) дисперсию X.

Доказать, что для любой непрерывной случайной величины центральный момент первого порядка равен нулю.

Доказать, что обычный момент второго порядка

имеет наименьшее значение, если c=M(Х).

Случайная величина X задана плотностью распределения f(x) = 0,5х в интервале (0,2); вне этого интервала f(x)=0. Найти начальные и центральные моменты первого, второго, третьего и четвертого порядков.

Случайная величина X задана плотностью распределения f(x) = 2х в интервале (0,1); вне этого интервала f(x)=0. Найти начальные и центральные моменты первого, второго, третьего и четвертого порядков.

Функция распределения случайной величины X имеет вид:

Найти вероятность того, что случайная величина примет значение в интервале [1;3].

По данным примера 3.12 найти плотность вероятности случайной величины X.

Функция задана в виде:

Найти: а) значение постоянной А, при которой функция будет плотностью вероятности некоторой случайной величины X; б) выражение функции распределения F(х); в) вычислить вероятность того, что случайная величина X примет значение на отрезке [2;3]; г) найти математическое ожидание и дисперсию случайной величины X.

Найти моду, медиану и математическое ожидание случайной величины X с плотностью вероятности .

По данным примера 3.15 найти квантильную точку х0,1 и 30%-ную точку случайной величины X.

Найти коэффициент асимметрии и эксцесс случайной величины, распределенной по так называемому закону Лапласа с плотностью вероятности .

Дана функция распределения случайной величины X:

а) Найти плотность вероятности φ(х);

б) построить графики φ(х) и F(х);

в) убедиться в том, что X - непрерывная случайная величина;

г) найти вероятности P(Х=1), P(Х<1), P(1<Х<2) (две последние вероятности показать на графиках φ(х) и F(x);

д) вычислить математическое ожидание M(Х), дисперсию D(Х), моду М0(Х) и медиану Мe(Х).

Случайная величина Х, сосредоточенная на интервале [-1;3], задана функцией распределения . Найти вероятность попадания случайной величины Х в интервал [0;2]. Построить график функции F(x).

Случайная величина Х, сосредоточенная на интервале [2;6], задана функцией распределения . Найти вероятность того, что а) меньше 4; б) меньше 6; в) не меньше 3; г) не меньше 6.

Случайная величина Х, сосредоточенная на интервале (1;4), задана квадратичной функцией распределения , имеющей максимум при х=4. Найти параметры a, b, c и вычислить вероятность попадания случайной величины Х в интервал [2;3].

Дана функция:

При каком значении параметра C эта функция является плотностью распределения некоторой непрерывной случайной величины Х? Найти математическое ожидание и дисперсию случайной величины Х.

Случайная величина Х задана функцией распределения

Найти: а) плотность вероятности φ(x); б) математическое ожидание M(Х); в) дисперсию D(X); г) вероятности P(Х=0,5), P(Х<0,5), P(0,5≤Х≤1); д) построить графики F(X) и φ(x) и показать на них математическое ожидание М(Х) и вероятности найденные в п. г).

По данным примера 3.66 найти: а) моду и медиану случайной величины X; б) квантиль х0,4 и 20%-ную точку распределения Х.

По данным примера 3.66 найти коэффициент асимметрии и эксцесс случайной величины Х.

Случайная величина распределена по закону Коши:

Найти: а) коэффициент А; б) функцию распределения F(X); в) вероятность Р(-1≤Х≤1). Существует ли для случайной величины Х математическое ожидание и дисперсия?

Случайная величина распределена по закону Лапласа:

Найти: а) коэффициент А; б) функцию распределения F(X); в) математическое ожидание и дисперсию. Построить графики функций φ(x) и F(x).

Случайная величина X распределена по закону «прямоугольного треугольника» в интервале (0;с). Найти: а) выражение плотности вероятности φ(x) и функции распределения F(x); б) математическое ожидание M(Х), дисперсию D(X), центральный момент µ3(Х); в) вероятность Р(с/2≤Х≤с) и показать её на данном в условии графике φ(x) и построенном графике F(x).

Решение задачи по теории вероятностей

Случайная величина X распределена по закону Симпсона (равнобедренного треугольника) на отрезке [-3;3]. Найти: а) выражение плотности вероятности φ(x) и функции распределения F(x); б) математическое ожидание М(Х), дисперсию D(X), центральный момент µ3(Х); в) вероятность и показать её на данном в условии графике φ(x) и построенном графике F(x).

Решение задач по теории вероятностей

Непрерывная случайная величина задана интервальной функцией F(x):

a=1, b=2 Найти: а) вероятность попадания случайной величины x в интервал (a;b); б) дифференциальную функцию; в) математическое ожидание, дисперсию среднеквадратическое отклонение случайной величины x; г) построить график функции f(x), F(x).

Back to top