Кремер Н.Ш. Теория вероятностей и математическая статистика Задачи с решениями



Кремер Н.Ш. Теория вероятностей и математическая статистика
Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник для ВУЗов. - 2- изд., перераб. и доп.-М:ЮНИТИ-ДАНА, 2004. - 573 с.

Найти несмещенную и состоятельную оценку средней выработки рабочих цеха по данным, представленной в таблице:

Таблица параметров задачи

Найти несмещенную и состоятельную оценку дисперсии случайной величины X - выработки рабочих цеха по данным выборки, представленной в таблице:

Таблица параметров задачи

Найти эффективную оценку генеральной доли p повторной выборки.

Найти эффективную оценку генеральной средней (математического ожидания a) повторной выборки для нормально распределенной генеральной совокупности.

При обследовании выработки 1000 рабочих цеха в отчетном году по сравнению с предыдущим по схеме собственно-случайной выборки было отобрано 100 рабочих. Получены следующие данные (смотри первые две графы таблицы):

Таблица параметров задачи

Необходимо определить: а) вероятность того, что средняя выработка рабочих цеха отличается от средней выборочной не более чем на 1% (по абсолютной величине); б) границы, в которых с вероятностью 0,9545 заключена средняя выработка рабочих цеха. Рассмотреть случаи повторной и бесповторной выборки.

Из партии, содержащей 2000 деталей, для проверки по схеме собственно-случайной бесповторной выборки было отобрано 200 деталей, среди которых оказалось 184 стандартных. Найти: а) вероятность того, что доля нестандартных деталей во всей партии отличается от полученной доли в выборке не более чем на 0,02 (по абсолютной величине); б) границы, в которых с надежностью 0,95 заключена доля нестандартных деталей во всей партии.

По условию примера 9.10 определить объем выборки, при котором с вероятностью 0,9973 отклонение средней выработки рабочих в выборке от средней выработки всех рабочих цеха не превзойдет 1% (по абсолютной величине).

По условию примера 9.11 определить число деталей, которые надо отобрать в выборку, чтобы с вероятностью 0,95 доля нестандартных деталей в выборке отличалась от генеральной доли не более, чем на 0,04 (по абсолютной величине). Найти то же число, если о доле нестандартных деталей, даже приблизительно, ничего неизвестно.

По данным примера 9.11 найти границы, в которых с надежностью 0,95 заключена доля p нестандартных изделий во всей партии, полагая n=50, w= 0,08, N=∞.

Для контроля срока службы электроламп из большой партии было отобрано 17 электроламп. В результате испытаний оказалось, что средний срок службы отобранных ламп равен 980ч., а среднее квадратическое отклонение их срока службы — 18ч. Необходимо определить: а) вероятность того, что средний срок службы ламп во всей партии отличается от среднего срока службы отобранных для испытаний ламп не более чем на . (по абсолютной величине); б) границы, в которых с вероятностью 0,95 заключен средний срок службы ламп во всей партии.

Опрос случайно отобранных 15 жителей города показал, что 6 из них будут поддерживать действующего мэра на предстоящих выборах. Найти границы, в которых с надежностью 0,9 заключена доля граждан города, которые будут поддерживать на предстоящих выборах действующего мэра.

На основании выборочных наблюдений производительности труда 20 работниц было установлено, что среднее квадратическое отклонение суточной выработки составляет 15м ткани в час. Предполагая, что производительность труда работницы имеет нормальное распределение, найти границы, в которых с надежностью 0,9 заключены генеральные дисперсия и среднее квадратическое отклонение суточной выработки работниц.

Решить задачу, приведенную в примере 9.17, при n=100 работницам.

Для исследования доходов населения города, составляющего 20тыс. человек, по схеме собственно-случайной бесповторной выборки было отобрано 1000 жителей. Получено следующее распределение жителей по месячному доходу (руб.):

Таблица исходных данных

Необходимо: 1. а) Найти вероятность того, что средний месячный доход жителя города отличается от среднего дохода его в выборке не более, чем на 45 руб. (по абсолютной величине); б) определить границы, в которых с надежностью 0,99 заключен средний месячный доход жителей города. 2. Каким должен быть объем выборки, чтобы те же границы гарантировать с надежностью 0,9973?

Для проверки эффективности новой технологии отобраны две группы рабочих: в первой группе численностью n1=50чел., где применялась новая технология, выборочная средняя выработка составила 85 (изделий), во второй группе численностью n2=70чел. выборочная средняя равна 78 (изделий). Предварительно установлено, что дисперсии выработки в группах равны соответственно σx2=100 и σy2=74. На уровне значимости α=0,05 выяснить влияние новой технологии на среднюю производительность.

Произведены две выборки урожая пшеницы: при своевременной уборке урожая и уборке с некоторым опозданием. В первом случае при наблюдении 8 участков выборочная средняя урожайность составила 16,2 ц/га, а среднее квадратическое отклонение - 3,2 ц/га; во втором случае при наблюдении 9 участков те же характеристики равнялись соответственно 13,9 ц/га и 2,1 ц/га. На уровне значимости α=0,05 выяснить влияние своевременности уборки урожая на среднее значение урожайности.

Имеются следующие данные об урожайности пшеницы на 8 опытных участках одинакового размера (ц/га): 26,5; 26,2; 35,9; 30,1; 32,3; 29,3; 26,1; 25,0. Есть основание предполагать, что значение урожайности третьего участка x*=35,9 зарегистрировано неверно. Является ли это значение аномальным (резко выделяющимся) на 5%-ном уровне значимости?

Контрольную работу по высшей математике по индивидуальным вариантам выполняли студенты двух групп первого курса. В первой группе было предложено 105 задач, из которых верно решено 60, во второй группе из 140 предложенных задач верно решено 69. На уровне значимости 0,02 проверить гипотезу об отсутствии существенных различий в усвоении учебного материала студентами обеих групп.

По условию примера 10.4 на уровне значимости α=0,05 выяснить, можно ли считать, что различия в усвоении учебного материала студентами четырех групп первого курса существенны. Дополнительные условия: для третьей группы m3=63, n3=125, для четвертой группы m4=105, n4=160.

На двух токарных станках обрабатываются втулки. Отобраны две пробы: из втулок, сделанных на первом станке, n1=15шт., на втором станке n2=18шт. По данным этих выборок рассчитаны выборочные дисперсии s12=8,5 (для первого станка) и s22=6,3 (для второго станка). Полагая, что размеры втулок подчиняются нормальному закону распределения, на уровне значимости α=0,05 выяснить, можно ли считать, что станки обладают различной точностью.

По условию примера 10.6 на уровне значимости α=0,05 выяснить, можно ли считать, что станки обладают различной точностью, если имеются 4 токарных станка и отобраны соответственно четыре пробы объемов: n1=15; n2=18; n3=25; n4=32. Выборочные дисперсии размеров втулок равны соответственно: s12 =8,5; s22 =6,3; s32 =9,3; s42 =5,8.

На основании сделанного прогноза средняя дебиторская задолженность однотипных предприятий региона должна составить a0=120ден.ед. Выборочная проверка 10 предприятий дала среднюю задолженность 135ден.ед., а среднее квадратическое отклонение задолженности s=20ден.ед. На уровне значимости 0,05: а) выяснить, можно ли принять данный прогноз; б) найти мощность критерия, использованного в п.а); в) определить минимальное число предприятий, которое следует проверить, чтобы обеспечить мощность критерия 0,975.

По данным примера 9.10 на уровне значимости α=0,05 проверить гипотезу о том, что средняя выработка рабочих всего цеха равна 121%.

По данным примера 9.11 на уровне значимости α=0,05 проверить гипотезу о том, что доля нестандартных деталей во всей партии равна 12%.

По данным примера 9.17 на уровне значимости α=0,1 проверить гипотезу о том, что среднее квадратическое отклонение суточной выработки работниц равно 20м/ч.

По данным примера 10.14 на уровне значимости α=0,05 проверить гипотезу H0 об однородности двух выборок (результатов двух проверок торговых точек города).

Для эмпирического распределения рабочих цеха по выработке по данным первых двух граф таблицы подобрать соответствующее теоретическое распределение и на уровне значимости α=0,05 проверить гипотезу о согласованности двух распределений с помощью критерия χ2.

Таблица значений задачи

Имеются следующие статистические данные о числе вызовов специализированных бригад скорой помощи в час в некотором населенном пункте в течение 300 ч:

Число вызовов в часах xi 0 1 2 3 4 5 6 7 8 Σ
Частота ni 15 71 75 68 39 17 10 4 1 300

Подобрать соответствующее теоретические распределение и на уровне значимости α=0,05 поверить гипотезу о согласованности двух распределений с помощью критерия χ2.

По данным примера 10.12 и таблице с помощью критерия Колмогорова на уровне значимости α=0,05 проверить гипотезу H0 о том, что случайная величина X - выработка рабочих предприятия - имеет нормальный закон распределения с параметрами a=119,2; σ2=87,48, т.е. N(119,2; 87,48).

Таблица параметров задачи

В течение месяца выборочно осуществлялась проверка торговых точек города по продаже овощей. Результаты двух проверок по недовесам покупателям одного вида овощей приведены в таблице:

Таблица параметров задачи

Можно ли считать, что на уровне значимости α=0,05 по результатам двух проверок (случайных выборок) недовесы овощей описываются одной и той же функцией распределения?

Дано распределение признака X - месячный доход жителя региона (в руб.); n=1000 (жителей):

Таблица данных

Необходимо:

1) построить полигон (гистограмму), кумуляту и эмпирическую функцию распределения Х;

2) найти:

а) среднюю арифметическую;

б) медиану и моду;

в) дисперсию, среднее квадратическое отклонение и коэффициент вариации;

г) начальные и центральные моменты k-го порядка (k=1, 2, 3, 4);

д) коэффициент асимметрии и эксцесс.

В условии задачи 8.11 дано распределение признака X - месячный доход жителя региона (в руб.); n=1000 (жителей):

На уровне значимости 0,05 проверить гипотезу о нормальном законе распределения признака (случайной величины) X, используя критерий согласия: а) χ2 - Пирсона; б) Колмогорова.

Дано распределение признака X - удой коров на молочной ферме за лактационный период (в ц.); n=100 (коров):

Таблица данных

Необходимо:

1) построить полигон (гистограмму), кумуляту и эмпирическую функцию распределения Х;

2) найти:

а) среднюю арифметическую;

б) медиану и моду;

в) дисперсию, среднее квадратическое отклонение и коэффициент вариации;

г) начальные и центральные моменты k-го порядка (k=1, 2, 3, 4);

д) коэффициент асимметрии и эксцесс.

В таблице приведено распределение 50 рабочих по производительности труда X (единиц за смену), разделенных на две группы: 30 и 20 человек.

Таблица данных

Вычислить общие и групповые средние и дисперсии и убедиться в справедливости правила сложения дисперсий.

Решить пример 9.19 при условии, что население города неизвестно, а известно лишь, что оно очень большое по сравнению с объемом выборки.

Back to top