Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №149, стр.047


Два равносильных противника играют в шахматы. Найти наивероятнейшее число выигрышей для любого шахматиста, если будет сыграно 2N результативных (без ничьих) партий.

Скачать решение бесплатно Купить решение
      * Оплата через Я.Деньги.

Другие задачи по теории вероятности

Два стрелка стреляют по мишени. Вероятность промаха при одном выстреле для первого стрелка равна 0,2, а для второго - 0,4. Найти наивероятнейшее число залпов, при которых не будет ни одного попадания в мишень, если стрелки произведут 25 залпов.

Два стрелка одновременно стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,8, а для второго - 0,6. Найти наивероятнейшее число залпов, при которых оба стрелка попадут в мишень, если будет произведено 15 залпов.

Сколько надо произвести независимых испытаний с вероятностью появления события в каждом испытании, равной 0,4, чтобы наивероятнейшее число появлений события в этих испытаниях было равно 25?

Вероятность появления события в каждом из независимых испытаний равна 0,3. Найти число испытаний n, при котором наивероятнейшее число появлений события в этих испытаниях будет равно 30.

Вероятность появления события в каждом из независимых испытаний равна 0,7. Найти число испытаний n, при котором наивероятнейшее число появлений события в этих испытаниях будет равно 20.

Чему равна вероятность p наступления события в каждом из 49 независимых испытаний, если наивероятнейшее число наступлений события в этих испытаниях равно 30?

Чему равна вероятность p наступления события в каждом из 39 независимых испытаний, если наивероятнейшее число наступлений события в этих испытаниях равно 25?

Back to top