Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №128, стр.042


Монета брошена 2N раз (N велико!). Найти вероятность того, что число выпадений «герба» будет заключено между числами и .

Скачать решение бесплатно Купить решение
      * Оплата через Я.Деньги.

Другие задачи по теории вероятности

Вероятность появления события в каждом из независимых испытаний равна 0,8. Сколько нужно произвести испытаний, чтобы с вероятностью 0,9 можно было ожидать, что событие появится не менее 75 раз?

Вероятность появления положительного результата в каждом из n опытов равна 0,9. Сколько нужно произвести опытов, чтобы с вероятностью 0,98 можно было ожидать, что не менее 150 опытов дадут положительный результат?

Вероятность появления события в каждом из 625 независимых испытаний равна 0,8. Найти вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на 0,04.

Вероятность появления события в каждом из 900 независимых испытаний равна 0,5. Найти вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на 0,02.

Вероятность появления события в каждом из 10000 независимых испытаний равна 0,75. Найти вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на 0,01.

Французский ученый Бюффон (XVIIIв.) бросил монету 4040 раз, причем «герб» появился 2048 раз. Найти вероятность того, что при повторении опыта Бюффона относительная частота появления «герба» отклонится от вероятности появления «герба» по абсолютной величине не более чем в опыте Бюффона.

Вероятность появления события в каждом из независимых испытаний равна 0,5. Найти число испытаний n, при котором с вероятностью 0,7698 можно ожидать, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на 0,02.

Back to top